請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16363
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡錦華 | |
dc.contributor.author | Yi Liu | en |
dc.contributor.author | 劉怡 | zh_TW |
dc.date.accessioned | 2021-06-07T18:11:30Z | - |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-06-29 | |
dc.identifier.citation | Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J. & Kenney, S. (2000). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224-1233.
Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K. & Sethi, G. (2006). Inflammation and cancer: how hot is the link? Biochem Pharmacol 72, 1605-1621. Apt, D., Watts, R. M., Suske, G. & Bernard, H. U. (1996). High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology 224, 281-291. Arch, R. H., Gedrich, R. W. & Thompson, C. B. (1998). Tumor necrosis factor receptor-associated factors (TRAFs)--a family of adapter proteins that regulates life and death. Genes Dev 12, 2821-2830. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211. Burkitt, D. & O'Conor, G. T. (1961). Malignant lymphoma in African children. I. A clinical syndrome. Cancer 14, 258-269. Busson, P., Keryer, C., Ooka, T. & Corbex, M. (2004). EBV-associated nasopharyngeal carcinomas: from epidemiology to virus-targeting strategies. Trends Microbiol 12, 356-360. Cahir-McFarland, E. D., Carter, K., Rosenwald, A., Giltnane, J. M., Henrickson, S. E., Staudt, L. M. & Kieff, E. (2004). Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol 78, 4108-4119. Calender, A., Billaud, M., Aubry, J. P., Banchereau, J., Vuillaume, M. & Lenoir, G. M. (1987). Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc Natl Acad Sci U S A 84, 8060-8064. Carter, K. L., Cahir-McFarland, E. & Kieff, E. (2002). Epstein-barr virus-induced changes in B-lymphocyte gene expression. J Virol 76, 10427-10436. Chang, C. J., Chien, Y., Lu, K. H., Chang, S. C., Chou, Y. C., Huang, C. S., Chang, C. H., Chen, K. H., Chang, Y. L., Tseng, L. M., Song, W. S., Wang, J. J., Lin, J. K., Huang, P. I. & Lan, Y. T. (2011). Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun 415, 245-251. Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M. & Liu, S. T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539. Chen, M. R., Tsai, C. H., Wu, F. F., Kan, S. H., Yang, C. S. & Chen, J. Y. (1999). The major immunogenic epitopes of Epstein-Barr virus (EBV) nuclear antigen 1 are encoded by sequence domains which vary among nasopharyngeal carcinoma biopsies and EBV-associated cell lines. J Gen Virol 80 ( Pt 2), 447-455. Chen, S. Y., Lu, J., Shih, Y. C. & Tsai, C. H. (2002). Epstein-Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 76, 9556-9561. Coeshott, C., Ohnemus, C., Pilyavskaya, A., Ross, S., Wieczorek, M., Kroona, H., Leimer, A. H. & Cheronis, J. (1999). Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A 96, 6261-6266. Countryman, J. & Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085-4089. Coussens, L. M. & Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867. Csernok, E., Szymkowiak, C. H., Mistry, N., Daha, M. R., Gross, W. L. & Kekow, J. (1996). Transforming growth factor-beta (TGF-beta) expression and interaction with proteinase 3 (PR3) in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin Exp Immunol 105, 104-111. D'Addario, M., Ahmad, A., Morgan, A. & Menezes, J. (2000). Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases. J Mol Biol 298, 765-778. D'Addario, M., Ahmad, A., Xu, J. W. & Menezes, J. (1999). Epstein-Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K. FASEB J 13, 2203-2213. Dahl, C. A., Schall, R. P., He, H. L. & Cairns, J. S. (1992). Identification of a novel gene expressed in activated natural killer cells and T cells. J Immunol 148, 597-603. Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N. & Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77, 2999-3003. Darr, C. D., Mauser, A. & Kenney, S. (2001). Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol 75, 6135-6142. Davies, M. L., Xu, S., Lyons-Weiler, J., Rosendorff, A., Webber, S. A., Wasil, L. R., Metes, D. & Rowe, D. T. (2010). Cellular factors associated with latency and spontaneous Epstein-Barr virus reactivation in B-lymphoblastoid cell lines. Virology 400, 53-67. Dawson, C. W., Port, R. J. & Young, L. S. (2012). The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 22, 144-153. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. (2003). Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694-3704. Devergne, O., Cahir McFarland, E. D., Mosialos, G., Izumi, K. M., Ware, C. F. & Kieff, E. (1998). Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72, 7900-7908. Di Bisceglie, A. M. (1997). Hepatitis C and hepatocellular carcinoma. Hepatology 26, 34S-38S. Dinarello, C. A. (2000). Proinflammatory cytokines. Chest 118, 503-508. Dinarello, C. A. & Kim, S. H. (2006). IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 65 Suppl 3, iii61-64. Dirmeier, U., Neuhierl, B., Kilger, E., Reisbach, G., Sandberg, M. L. & Hammerschmidt, W. (2003). Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. Cancer Res 63, 2982-2989. Dolyniuk, M., Pritchett, R. & Kieff, E. (1976). Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17, 935-949. Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W. & Young, L. S. (1999). Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274, 16085-16096. Eliopoulos, A. G. & Young, L. S. (1998). Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16, 1731-1742. Eliopoulos, A. G. & Young, L. S. (2001). LMP1 structure and signal transduction. Semin Cancer Biol 11, 435-444. Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703. Fields, B. N., Knipe, D. M. & Howley, P. M. (2007). Fields' virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. Foss, H. D., Herbst, H., Gottstein, S., Demel, G., Araujo, I. & Stein, H. (1996). Interleukin-8 in Hodgkin's disease. Preferential expression by reactive cells and association with neutrophil density. Am J Pathol 148, 1229-1236. Gao, X., Ikuta, K., Tajima, M. & Sairenji, T. (2001). 12-O-tetradecanoylphorbol-13-acetate induces Epstein-Barr virus reactivation via NF-kappaB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. Virology 286, 91-99. Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., Zeidler, R., Scheffer, B., Ueffing, M. & Hammerschmidt, W. (1999). Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18, 3064-3073. Given, D., Yee, D., Griem, K. & Kieff, E. (1979). DNA of Epstein-Barr virus. V. Direct repeats of the ends of Epstein-Barr virus DNA. J Virol 30, 852-862. Goda, C., Kanaji, T., Kanaji, S., Tanaka, G., Arima, K., Ohno, S. & Izuhara, K. (2006). Involvement of IL-32 in activation-induced cell death in T cells. Int Immunol 18, 233-240. Grab, L. T., Kearns, M. W., Morris, A. J. & Daniel, L. W. (2004). Differential role for phospholipase D1 and phospholipase D2 in 12-O-tetradecanoyl-13-phorbol acetate-stimulated MAPK activation, Cox-2 and IL-8 expression. Biochim Biophys Acta 1636, 29-39. Greenspan, J. S. & Greenspan, D. (1989). Oral hairy leukoplakia: diagnosis and management. Oral Surg Oral Med Oral Pathol 67, 396-403. Gruffat, H., Duran, N., Buisson, M., Wild, F., Buckland, R. & Sergeant, A. (1992). Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol 66, 46-52. Halder, S., Murakami, M., Verma, S. C., Kumar, P., Yi, F. & Robertson, E. S. (2009). Early events associated with infection of Epstein-Barr virus infection of primary B-cells. PLoS One 4, e7214. Hardwick, J. M., Lieberman, P. M. & Hayward, S. D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-2284. Hasegawa, H., Thomas, H. J., Schooley, K. & Born, T. L. (2011). Native IL-32 is released from intestinal epithelial cells via a non-classical secretory pathway as a membrane-associated protein. Cytokine 53, 74-83. Heinhuis, B., Koenders, M. I., van de Loo, F. A., Netea, M. G., van den Berg, W. B. & Joosten, L. A. (2011a). Inflammation-dependent secretion and splicing of IL-32{gamma} in rheumatoid arthritis. Proc Natl Acad Sci U S A 108, 4962-4967. Heinhuis, B., Koenders, M. I., van den Berg, W. B., Netea, M. G., Dinarello, C. A. & Joosten, L. A. (2012). Interleukin 32 (IL-32) contains a typical alpha-helix bundle structure that resembles focal adhesion targeting region of focal adhesion kinase-1. J Biol Chem 287, 5733-5743. Heinhuis, B., Koenders, M. I., van Riel, P. L., van de Loo, F. A., Dinarello, C. A., Netea, M. G., van den Berg, W. B. & Joosten, L. A. (2011b). Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade. Ann Rheum Dis 70, 660-667. Henle, G. & Henle, W. (1966). Studies on cell lines derived from Burkitt's lymphoma. Trans N Y Acad Sci 29, 71-79. Higuchi, M., Kieff, E. & Izumi, K. M. (2002). The Epstein-Barr virus latent membrane protein 1 putative Janus kinase 3 (JAK3) binding domain does not mediate JAK3 association or activation in B-lymphoma or lymphoblastoid cell lines. J Virol 76, 455-459. Hjalgrim, H. & Engels, E. A. (2008). Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med 264, 537-548. Hong, G. K., Gulley, M. L., Feng, W. H., Delecluse, H. J., Holley-Guthrie, E. & Kenney, S. C. (2005). Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79, 13993-14003. Hong, J., Bae, S., Kang, Y., Yoon, D., Bai, X., Chan, E. D., Azam, T., Dinarello, C. A., Lee, S., Her, E., Rho, G. & Kim, S. (2010). Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFalpha and IL-1beta. Cytokine 49, 171-176. Hornef, M. W., Bein, G., Fricke, L., Steinhoff, J., Wagner, H. J., Hinderer, W., Sonneborn, H. H. & Kirchner, H. (1995). Coincidence of Epstein-Barr virus reactivation, cytomegalovirus infection, and rejection episodes in renal transplant recipients. Transplantation 60, 474-480. Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y. & Tsai, C. H. (2005). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. (1995). The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549-560. Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S. & Yamamoto, T. (2000). Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254, 14-24. Izumi, K. M., Cahir McFarland, E. D., Riley, E. A., Rizzo, D., Chen, Y. & Kieff, E. (1999). The residues between the two transformation effector sites of Epstein-Barr virus latent membrane protein 1 are not critical for B-lymphocyte growth transformation. J Virol 73, 9908-9916. James, P., Halladay, J. & Craig, E. A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436. Jones, R. J., Seaman, W. T., Feng, W. H., Barlow, E., Dickerson, S., Delecluse, H. J. & Kenney, S. C. (2007). Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121, 1274-1281. Joosten, L. A., Netea, M. G., Kim, S. H., Yoon, D. Y., Oppers-Walgreen, B., Radstake, T. R., Barrera, P., van de Loo, F. A., Dinarello, C. A. & van den Berg, W. B. (2006). IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci U S A 103, 3298-3303. Kanda, K., Kempkes, B., Bornkamm, G. W., von Gabain, A. & Decker, T. (1999). The Epstein-Barr virus nuclear antigen 2 (EBNA2), a protein required for B lymphocyte immortalization, induces the synthesis of type I interferon in Burkitt's lymphoma cell lines. Biol Chem 380, 213-221. Kang, J. W., Choi, S. C., Cho, M. C., Kim, H. J., Kim, J. H., Lim, J. S., Kim, S. H., Han, J. Y. & Yoon, D. Y. (2009). A proinflammatory cytokine interleukin-32beta promotes the production of an anti-inflammatory cytokine interleukin-10. Immunology 128, e532-540. Kang, Y. H., Park, M. Y., Yoon, D. Y., Han, S. R., Lee, C. I., Ji, N. Y., Myung, P. K., Lee, H. G., Kim, J. W., Yeom, Y. I., Jang, Y. J., Ahn, D. K. & Song, E. Y. (2012). Dysregulation of overexpressed IL-32alpha in hepatocellular carcinoma suppresses cell growth and induces apoptosis through inactivation of NF-kappaB and Bcl-2. Cancer Lett 318, 226-233. Kapp, U., Wolf, J., Hummel, M., Pawlita, M., von Kalle, C., Dallenbach, F., Schwonzen, M., Krueger, G. R., Muller-Lantzsch, N., Fonatsch, C. & et al. (1993). Hodgkin's lymphoma-derived tissue serially transplanted into severe combined immunodeficient mice. Blood 82, 1247-1256. Kaye, K. M., Izumi, K. M. & Kieff, E. (1993). Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90, 9150-9154. Kedzierska, K. & Crowe, S. M. (2001). Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 12, 133-150. Kieser, A., Kilger, E., Gires, O., Ueffing, M., Kolch, W. & Hammerschmidt, W. (1997). Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16, 6478-6485. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17, 1700-1709. Kim, K. H., Shim, J. H., Seo, E. H., Cho, M. C., Kang, J. W., Kim, S. H., Yu, D. Y., Song, E. Y., Lee, H. G., Sohn, J. H., Kim, J., Dinarello, C. A. & Yoon, D. Y. (2008a). Interleukin-32 monoclonal antibodies for immunohistochemistry, Western blotting, and ELISA. J Immunol Methods 333, 38-50. Kim, S., Lee, S., Her, E., Bae, S., Choi, J., Hong, J., Jaekal, J., Yoon, D., Azam, T. & Dinarello, C. A. (2008b). Proteinase 3-processed form of the recombinant IL-32 separate domain. BMB Rep 41, 814-819. Kim, S. H., Han, S. Y., Azam, T., Yoon, D. Y. & Dinarello, C. A. (2005). Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22, 131-142. Kobayashi, H., Huang, J., Ye, F., Shyr, Y., Blackwell, T. S. & Lin, P. C. (2010). Interleukin-32beta propagates vascular inflammation and exacerbates sepsis in a mouse model. PLoS One 5, e9458. Kobayashi, H. & Lin, P. C. (2009). Molecular characterization of IL-32 in human endothelial cells. Cytokine 46, 351-358. Kumar, A. P. & Butler, A. P. (1997). Transcription factor Sp3 antagonizes activation of the ornithine decarboxylase promoter by Sp1. Nucleic Acids Res 25, 2012-2019. Laichalk, L. L. & Thorley-Lawson, D. A. (2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-1307. Lee, S., Kim, J. H., Kim, H., Kang, J. W., Kim, S. H., Yang, Y., Kim, J., Park, J., Park, S., Hong, J. & Yoon, D. Y. (2011). Activation of the interleukin-32 pro-inflammatory pathway in response to human papillomavirus infection and over-expression of interleukin-32 controls the expression of the human papillomavirus oncogene. Immunology 132, 410-420. Li, H. P. & Chang, Y. S. (2003). Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504. Li, Q. X., Young, L. S., Niedobitek, G., Dawson, C. W., Birkenbach, M., Wang, F. & Rickinson, A. B. (1992). Epstein-Barr virus infection and replication in a human epithelial cell system. Nature 356, 347-350. Li, W., Liu, Y., Mukhtar, M. M., Gong, R., Pan, Y., Rasool, S. T., Gao, Y., Kang, L., Hao, Q., Peng, G., Chen, Y., Chen, X., Wu, J. & Zhu, Y. (2008). Activation of interleukin-32 pro-inflammatory pathway in response to influenza A virus infection. PLoS One 3, e1985. Li, W., Sun, W., Liu, L., Yang, F., Li, Y., Chen, Y., Fang, J., Zhang, W., Wu, J. & Zhu, Y. (2010). IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol 185, 5056-5065. Luca, M., Huang, S., Gershenwald, J. E., Singh, R. K., Reich, R. & Bar-Eli, M. (1997). Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151, 1105-1113. Luka, J., Kallin, B. & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231. Maggio, E., van den Berg, A., Diepstra, A., Kluiver, J., Visser, L. & Poppema, S. (2002). Chemokines, cytokines and their receptors in Hodgkin's lymphoma cell lines and tissues. Ann Oncol 13 Suppl 1, 52-56. Mahot, S., Sergeant, A., Drouet, E. & Gruffat, H. (2003). A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84, 965-974. Mantovani, A. (2005). Cancer: inflammation by remote control. Nature 435, 752-753. Masood, R., Zhang, Y., Bond, M. W., Scadden, D. T., Moudgil, T., Law, R. E., Kaplan, M. H., Jung, B., Espina, B. M., Lunardi-Iskandar, Y. & et al. (1995). Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood 85, 3423-3430. Meyer, N., Zimmermann, M., Burgler, S., Bassin, C., Woehrl, S., Moritz, K., Rhyner, C., Indermitte, P., Schmid-Grendelmeier, P., Akdis, M., Menz, G. & Akdis, C. A. (2010). IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis. J Allergy Clin Immunol 125, 858-865 e810. Montone, K. T., Hodinka, R. L., Salhany, K. E., Lavi, E., Rostami, A. & Tomaszewski, J. E. (1996). Identification of Epstein-Barr virus lytic activity in post-transplantation lymphoproliferative disease. Mod Pathol 9, 621-630. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683-765. Moschen, A. R., Fritz, T., Clouston, A. D., Rebhan, I., Bauhofer, O., Barrie, H. D., Powell, E. E., Kim, S. H., Dinarello, C. A., Bartenschlager, R., Jonsson, J. R. & Tilg, H. (2011). Interleukin-32: a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis. Hepatology 53, 1819-1829. Mosialos, G. (2001). Cytokine signaling and Epstein-Barr virus-mediated cell transformation. Cytokine Growth Factor Rev 12, 259-270. Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C. & Kieff, E. (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389-399. Nabors, L. B., Suswam, E., Huang, Y., Yang, X., Johnson, M. J. & King, P. H. (2003). Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res 63, 4181-4187. Nakagomi, H., Dolcetti, R., Bejarano, M. T., Pisa, P., Kiessling, R. & Masucci, M. G. (1994). The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines. Int J Cancer 57, 240-244. Nalesnik, M. A. (1998). Clinical and pathological features of post-transplant lymphoproliferative disorders (PTLD). Springer Semin Immunopathol 20, 325-342. Netea, M. G., Azam, T., Ferwerda, G., Girardin, S. E., Walsh, M., Park, J. S., Abraham, E., Kim, J. M., Yoon, D. Y., Dinarello, C. A. & Kim, S. H. (2005). IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A 102, 16309-16314. Netea, M. G., Azam, T., Lewis, E. C., Joosten, L. A., Wang, M., Langenberg, D., Meng, X., Chan, E. D., Yoon, D. Y., Ottenhoff, T., Kim, S. H. & Dinarello, C. A. (2006). Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism. PLoS Med 3, e277. Netea, M. G., Lewis, E. C., Azam, T., Joosten, L. A., Jaekal, J., Bae, S. Y., Dinarello, C. A. & Kim, S. H. (2008). Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc Natl Acad Sci U S A 105, 3515-3520. Nishida, A., Andoh, A., Inatomi, O. & Fujiyama, Y. (2009). Interleukin-32 expression in the pancreas. J Biol Chem 284, 17868-17876. Nold-Petry, C. A., Nold, M. F., Zepp, J. A., Kim, S. H., Voelkel, N. F. & Dinarello, C. A. (2009). IL-32-dependent effects of IL-1beta on endothelial cell functions. Proc Natl Acad Sci U S A 106, 3883-3888. Nold, M. F., Nold-Petry, C. A., Pott, G. B., Zepp, J. A., Saavedra, M. T., Kim, S. H. & Dinarello, C. A. (2008). Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 181, 557-565. Novick, D., Rubinstein, M., Azam, T., Rabinkov, A., Dinarello, C. A. & Kim, S. H. (2006). Proteinase 3 is an IL-32 binding protein. Proc Natl Acad Sci U S A 103, 3316-3321. Okano, M. & Gross, T. G. (2001). From Burkitt's lymphoma to chronic active Epstein-Barr virus (EBV) infection: an expanding spectrum of EBV-associated diseases. Pediatr Hematol Oncol 18, 427-442. Padrines, M., Wolf, M., Walz, A. & Baggiolini, M. (1994). Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett 352, 231-235. Pan, X., Cao, H., Lu, J., Shu, X., Xiong, X., Hong, X., Xu, Q., Zhu, H., Li, G. & Shen, G. (2011). Interleukin-32 expression induced by hepatitis B virus protein X is mediated through activation of NF-kappaB. Mol Immunol 48, 1573-1577. Peng, M. & Lundgren, E. (1992). Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 7, 1775-1782. Pope, J. H., Horne, M. K. & Scott, W. (1968). Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3, 857-866. Purtilo, D. T. (1987). Epstein-Barr virus: the spectrum of its manifestations in human beings. South Med J 80, 943-947. Ragoczy, T. & Miller, G. (2001). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 75, 5240-5251. Rea, D., Fourcade, C., Leblond, V., Rowe, M., Joab, I., Edelman, L., Bitker, M. O., Gandjbakhch, I., Suberbielle, C., Farcet, J. P. & et al. (1994). Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation. Transplantation 58, 317-324. Robache-Gallea, S., Morand, V., Bruneau, J. M., Schoot, B., Tagat, E., Realo, E., Chouaib, S. & Roman-Roman, S. (1995). In vitro processing of human tumor necrosis factor-alpha. J Biol Chem 270, 23688-23692. Salazar-Onfray, F. (1999). Interleukin-10: a cytokine used by tumors to escape immunosurveillance. Med Oncol 16, 86-94. Scala, G., Quinto, I., Ruocco, M. R., Arcucci, A., Mallardo, M., Caretto, P., Forni, G. & Venuta, S. (1990). Expression of an exogenous interleukin 6 gene in human Epstein Barr virus B cells confers growth advantage and in vivo tumorigenicity. J Exp Med 172, 61-68. Shioya, M., Nishida, A., Yagi, Y., Ogawa, A., Tsujikawa, T., Kim-Mitsuyama, S., Takayanagi, A., Shimizu, N., Fujiyama, Y. & Andoh, A. (2007). Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin Exp Immunol 149, 480-486. Shoda, H., Fujio, K., Yamaguchi, Y., Okamoto, A., Sawada, T., Kochi, Y. & Yamamoto, K. (2006). Interactions between IL-32 and tumor necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases. Arthritis Res Ther 8, R166. Shoda, H., Fujio, K. & Yamamoto, K. (2007). Rheumatoid arthritis and interleukin-32. Cell Mol Life Sci 64, 2671-2679. Skinnider, B. F. & Mak, T. W. (2002). The role of cytokines in classical Hodgkin lymphoma. Blood 99, 4283-4297. Speck, S. H., Chatila, T. & Flemington, E. (1997). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399-405. Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S., Wagner, L., Shenmen, C. M., Schuler, G. D., Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K., Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A. A., Rubin, G. M., Hong, L., Stapleton, M., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S. J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne, P. H., Richards, S., Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J., Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren, E. J., Lu, X., Gibbs, R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Young, A. C., Shevchenko, Y., Bouffard, G. G., Blakesley, R. W., Touchman, J. W., Green, E. D., Dickson, M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M., Butterfield, Y. S., Krzywinski, M. I., Skalska, U., Smailus, D. E., Schnerch, A., Schein, J. E., Jones, S. J. & Marra, M. A. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99, 16899-16903. Swenson, J. J., Holley-Guthrie, E. & Kenney, S. C. (2001). Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation. J Virol 75, 6228-6234. Tanner, J. E. & Alfieri, C. (2001). The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis 3, 60-69. Tanner, J. E. & Tosato, G. (1992). Regulation of B-cell growth and immunoglobulin gene transcription by interleukin-6. Blood 79, 452-459. Thorley-Lawson, D. A. (2001). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75-82. Thorley-Lawson, D. A. & Allday, M. J. (2008). The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat Rev Microbiol 6, 913-924. Thorley-Lawson, D. A. & Babcock, G. J. (1999). A model for persistent infection with Epstein-Barr virus: the stealth virus of human B cells. Life Sci 65, 1433-1453. Thorley-Lawson, D. A. & Gross, A. (2004). Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328-1337. Thorley-Lawson, D. A. & Mann, K. P. (1985). Early events in Epstein-Barr virus infection provide a model for B cell activation. J Exp Med 162, 45-59. Tosato, G., Tanner, J., Jones, K. D., Revel, M. & Pike, S. E. (1990). Identification of interleukin-6 as an autocrine growth factor for Epstein-Barr virus-immortalized B cells. J Virol 64, 3033-3041. Tsai, C. H., Liu, M. T., Chen, M. R., Lu, J., Yang, H. L., Chen, J. Y. & Yang, C. S. (1997). Characterization of Monoclonal Antibodies to the Zta and DNase Proteins of Epstein-Barr Virus. J Biomed Sci 4, 69-77. Tsai, S. C., Lin, S. J., Chen, P. W., Luo, W. Y., Yeh, T. H., Wang, H. W., Chen, C. J. & Tsai, C. H. (2009). EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 114, 109-118. Tsurumi, T., Fujita, M. & Kudoh, A. (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15, 3-15. Van Meir, E., Ceska, M., Effenberger, F., Walz, A., Grouzmann, E., Desbaillets, I., Frei, K., Fontana, A. & de Tribolet, N. (1992). Interleukin-8 is produced in neoplastic and infectious diseases of the human central nervous system. Cancer Res 52, 4297-4305. Xiao, W. (2004). Advances in NF-kappaB signaling transduction and transcription. Cell Mol Immunol 1, 425-435. Yates, J. L., Warren, N. & Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812-815. Yoshida, S., Ono, M., Shono, T., Izumi, H., Ishibashi, T., Suzuki, H. & Kuwano, M. (1997). Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 17, 4015-4023. Young, L. S. & Rickinson, A. B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757-768. Zalani, S., Holley-Guthrie, E. A., Gutsch, D. E. & Kenney, S. C. (1992). The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Sp1 transcription factor. J Virol 66, 7282-7292. Zepp, J. A., Nold-Petry, C. A., Dinarello, C. A. & Nold, M. F. (2011). Protection from RNA and DNA viruses by IL-32. J Immunol 186, 4110-4118. Zhang, Z., Zhang, Q., Yu, Y., Ouyang, Y. & He, Z. (2008). [Construction and function analysis of the Epstein-Barr virus-encoded latent membrane protein-1 of CTAR3 region]. Wei Sheng Wu Xue Bao 48, 1308-1313. zur Hausen, H., O'Neill, F. J., Freese, U. K. & Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16363 | - |
dc.description.abstract | EB病毒為人類致癌皰疹病毒,能不朽化初代B細胞為不斷增生的淋巴母細胞株 (lymphoblastoid cell line,LCL)。越來越多的研究證實許多EB病毒的基因產物在使細胞轉型的過程中可誘發細胞激素的產生,而這些細胞激素為細胞增生所必需。於本實驗室先前的cDNA微陣列分析結果中,我們發現白細胞介素32 (interleukin 32,IL-32) 的表現量在EB病毒感染B細胞後有增加的現象。IL-32近年來被認為是一促炎細胞激素,因此本研究的主要目的為探討IL-32在EB病毒不朽化的LCL細胞中,其表現的位置、調控機制和生物活性為何。
首先以RT-Q-PCR證實IL-32在九株本實驗室建立的LCL細胞中皆有表現。以RT-PCR的方式偵測LCL中IL-32表現的亞型 (isoform),結果顯示IL-32的六種剪接變異體中,IL-32β為主要表現的亞型。IL-32的蛋白質在與同一捐贈者得來的LCL與初代B細胞相比也具有高量表現。以免疫螢光染色法觀察細胞內的IL-32,顯示主要表現於LCL的細胞質中。進一步發現EB病毒的潛伏膜蛋白LMP1和溶裂極早期蛋白Rta於表皮細胞中可誘發IL-32的mRNA和蛋白質表現,而LMP1在表皮細胞和B細胞皆可誘發IL-32。以shRNA技術將LCL細胞中內生性的LMP1降解,會抑制IL-32的表現,顯示LMP1在LCL細胞中具正向調控IL-32之功能。分子機制上,LMP1透過其C端活化區域CTAR1及CTAR2以調控IL-32基因表現。在螢光酵素報導基因分析結果中則顯示活化IL-32需透過其啟動子上-8至+2的NF-κB結合位和-30至-23的CRE (cAMP response element) 位點。染色質免疫沉澱法則指出在LMP1表現的Akata細胞中,NF-κB的p65會與IL-32啟動子結合。此外,IL-32啟動子上+272至+281的Sp1結合位對於Rta活化IL-32的螢光報導質體是重要的。於表皮細胞同時表現LMP1和Rta時,IL-32的表現具有加成作用,暗示LMP1和Rta透過不同的訊息路徑誘發IL-32。 在LMP1表現的Akata細胞中以shRNA技術降解IL-32,結果發現TNFα的mRNA表現下降。另外在降解內生性IL-32的LCL細胞中,以phorbol myristate acetate (PMA) 誘發發炎細胞激素產生,結果發現IL-8、IL-1β及IL-10的mRNA表現無法被誘發。基於這些結果我們假設於LCL細胞中LMP1誘發的IL-32能增強細胞激素的產生,並能參與體外EB病毒引起的發炎反應。生理上,將IL-32降解不會影響LCL細胞的增生或凋亡。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a human oncogenic herpes virus, which has the potential to immortalize primary B cells into unlimitedly proliferating lymphoblastoid cell line (LCL). The growing body of evidence indicated that several EBV products induce cytokines during immortalization process and these cytokines are requisite for cell proliferation. In previous cDNA microarray results, we found that interleukin 32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection. So, the main purpose of this thesis is to examine the expression pattern, regulatory mechanism and biological activities of IL-32 in EBV-immortalized LCLs.
The expression of IL-32 was confirmed by RT-Q-PCR in 9 LCLs, which were established in our lab. Among the six isoforms of IL-32, IL-32β was the major isoform detected in LCLs by RT-PCR. The up-regulation of IL-32 proteins was demonstrated in LCLs, compared to their corresponding primary B cells. The location of these intracellular IL-32 was mainly in the cytoplasm of LCLs using immunofluorescence assay. Furthermore, the EBV latent membrane protein 1 (LMP1) and immediate-early protein Rta were responsible to induce IL-32 expression at both mRNA and protein levels in epithelial cells, while LMP1 was found to induce IL-32 in both epithelial and B cells. Short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 in LCLs suppressed the IL-32 expression, suggesting that LMP1 is the key factor to induce IL-32 in LCLs. Molecularly, we demonstrated that the COOH-terminal activating region (CTAR) 1 and CTAR2 of LMP1 was required to induce IL-32. The NF-κB site located at the -8 to +2 and the CRE (cAMP response element) site at the -30 to -23 of IL-32 promoter are required to activate IL-32 in the reporter assays. Furthermore, the results from ChIP assay indicated that NF-κB subunit p65 is recruited to IL-32 promoter region in LMP1-expressing Akata cells. In addition, the Sp1 site at the +272 to +281 of IL-32 promoter was essential for Rta-induced IL-32 expression. LMP1 and Rta induced IL-32 additively while co-expressed in epithelial cells, suggesting the distinct pathways to induce IL-32. In LMP1-overexpressed Akata cells, shRNA-mediated silence of endogenous IL-32 reduced TNFα mRNA expression. The mRNA expression of phorbol myristate acetate (PMA)-induced inflammatory cytokines, including IL-8, IL-10 and IL-1β were decreased in IL-32-depleted LCLs, as compared with the control cells. So, we assumed that LMP1-induced IL-32 production enhance the cytokine production in EBV-immortalized LCLs, which may contribute to the involvement of EBV-induced inflammation in vivo. Biologically, knockdown IL-32 did not influence the proliferation abilities and apoptosis of LCLs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:11:30Z (GMT). No. of bitstreams: 1 ntu-101-R98445130-1.pdf: 2325671 bytes, checksum: 8780d0a4ca7fc9405c505488d0231ac0 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 IV 英文摘要 VI 第一章 緒論 1 第二章 實驗材料與方法 15 第三章 結果 32 第四章 討論 40 第五章 圖表 50 第六章 參考文獻 82 | |
dc.language.iso | zh-TW | |
dc.title | 探討白細胞介素IL-32於EB病毒感染B細胞中之調控機制及生理功能 | zh_TW |
dc.title | The regulatory mechanism and biological activities of IL-32 in EBV-infected B cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林素芳,林素珍 | |
dc.subject.keyword | EB病毒,白細胞介素32,LMP1,cytokine, | zh_TW |
dc.subject.keyword | EBV,IL-32,LMP1,cytokine, | en |
dc.relation.page | 94 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-02 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。