Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16331Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Hui Lin) | |
| dc.contributor.author | Hung-Hsuan Wei | en |
| dc.contributor.author | 魏弘瑄 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:10:06Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-09 | |
| dc.identifier.citation | 1. Siepmann, J., et al., Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release, 2004. 96(1): p. 123-34.
2. Prisant, L.M., et al., Novel Drug-Delivery Systems for Hypertension. American Journal of Medicine, 1992. 93: p. S45-S55. 3. Florence, A.T., et al., Nanoparticles as Carriers for Oral Peptide Absorption - Studies on Particle Uptake and Fate. Journal of Controlled Release, 1995. 36(1-2): p. 39-46. 4. Davis, M.E., Z. Chen, and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 2008. 7(9): p. 771-782. 5. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 2010. 9(8): p. 615-627. 6. Langer, R., New Methods of Drug Delivery. Science, 1990. 249(4976): p. 1527-1533. 7. Acharya, G. and K. Park, Mechanisms of controlled drug release from drug-eluting stents. Advanced Drug Delivery Reviews, 2006. 58(3): p. 387-401. 8. Kim, H. and R. Fassihi, Application of a binary polymer system in drug release rate modulation .1. Characterization of release mechanism. Journal of Pharmaceutical Sciences, 1997. 86(3): p. 316-322. 9. Kerner, W. and J. Bruckel, Definition, Classification and Diagnosis of the Diabetes Mellitus. Diabetologie Und Stoffwechsel, 2009. 4: p. S115-S117. 10. Gavin, J.R., et al., Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 2000. 23: p. S4-S19. 11. Gangemi, A., et al., Islet transplantation for brittle type 1 diabetes: The UIC protocol. American Journal of Transplantation, 2008. 8(6): p. 1250-1261. 12. Lanza, R.P., S.J. Sullivan, and W.L. Chick, Islet Transplantation with Immunoisolation. Diabetes, 1992. 41(12): p. 1503-1510. 13. Wang, T., et al., An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnology, 1997. 15(4): p. 358-362. 14. Lee, M.K. and Y.H. Bae, Cell transplantation for endocrine disorders. Advanced Drug Delivery Reviews, 2000. 42(1-2): p. 103-120. 15. Yang, K.C., et al., Calcium Phosphate Cement Chamber as an Immunoisolative Device for Bioartificial Pancreas In Vitro and Preliminary In Vivo Study. Pancreas, 2010. 39(4): p. 444-451. 16. Moberg, E., [Insulin pump with glucose sensor in type 1 diabetes. But the artificial pancreas is still far off]. Lakartidningen, 2010. 107(49): p. 3120-1. 17. Kumareswaran, K., M.L. Evans, and R. Hovorka, Artificial pancreas: an emerging approach to treat Type 1 diabetes. Expert Rev Med Devices, 2009. 6(4): p. 401-10. 18. Vix, M., et al., [Implantable insulin pump: the first step towards an artificial pancreas]. Ann Chir, 1994. 48(11): p. 991-7. 19. Newgard, C.B., Cellular engineering and gene therapy strategies for insulin replacement in diabetes. Diabetes, 1994. 43(3): p. 341-50. 20. Rothman, S., H. Tseng, and I. Goldfine, Oral gene therapy: a novel method for the manufacture and delivery of protein drugs. Diabetes Technol Ther, 2005. 7(3): p. 549-57. 21. Daly, M.E., et al., Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. American Journal of Clinical Nutrition, 1998. 67(6): p. 1186-96. 22. Miller, W.L. and J.D. Baxter, Recombinant DNA--a new source of insulin. Diabetologia, 1980. 18(6): p. 431-6. 23. Johnson, I.S., Human insulin from recombinant DNA technology. Science, 1983. 219(4585): p. 632-7. 24. Owens, D.R., B. Zinman, and G.B. Bolli, Insulins today and beyond. Lancet, 2001. 358(9283): p. 739-46. 25. Saffran, M., et al., Insulin and the gastrointestinal tract. Journal of Controlled Release, 1997. 46(1-2): p. 89-98. 26. Morcol, T., et al., Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. International Journal of Pharmaceutics, 2004. 277(1-2): p. 91-97. 27. Patton, J.S., J. Bukar, and S. Nagarajan, Inhaled insulin. Advanced Drug Delivery Reviews, 1999. 35(2-3): p. 235-247. 28. Khan Ghilzai, N.M., New developments in insulin delivery. Drug Dev Ind Pharm, 2003. 29(3): p. 253-65. 29. Denne, J.R., et al., A survey of patient preference for insulin jet injectors versus needle and syringe. Diabetes Educ, 1992. 18(3): p. 223-7. 30. Lin, H.C., et al., Quantitative measurement of nano-/microparticle endocytosis by cell mass spectrometry. Angew Chem Int Ed Engl, 2010. 49(20): p. 3460-4. 31. 陳煒奕, 磷酸鈣在動物體內機械性質研究. 國立成功大學 材料科學與工程學系, 2004. 碩士論文. 32. Ijntema, K., et al., Hydroxyapatite Microcarriers for Biocontrolled Release of Protein Drugs. International Journal of Pharmaceutics, 1994. 112(3): p. 215-224. 33. Itokazu, M., et al., Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials, 1998. 19(7-9): p. 817-9. 34. Mizushima, Y., et al., Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release, 2006. 110(2): p. 260-265. 35. Hook, J.R. and H.E. Hall, Solid state physics. 2nd ed. The Manchester physics series1991, Chichester ; New York: Wiley. xxi, 474 p. 36. Dorozhkin, S.V., Calcium phosphates and human beings. Journal of Chemical Education, 2006. 83(5): p. 713-719. 37. Meyers, M.A., et al., Structural biological composites: An overview. Jom, 2006. 58(7): p. 35-41. 38. Liu, Y., et al., Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res, 2001. 57(3): p. 327-35. 39. Mayer, G., Role of biosilica in materials science: lessons from siliceous biological systems for structural composites. Prog Mol Subcell Biol, 2009. 47: p. 277-94. 40. Ikoma, T., et al., Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol, 2003. 142(3): p. 327-33. 41. Liu, Y., et al., Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials, 2003. 24(1): p. 65-70. 42. Villanueva-Espinosa, J.F., M. Hernandez-Esparza, and F.A. Ruiz-Trevino, Adsorptive properties of fish scales of Oreochromis Niloticus (Mojarra Tilapia) for metallic ion removal from waste water. Industrial & Engineering Chemistry Research, 2001. 40(16): p. 3563-3569. 43. Zuo, G.F., et al., Synthesis of Intercalated Lamellar Hydroxyapatite/Gelatin Nanocomposite for Bone Substitute Application. Journal of Applied Polymer Science, 2009. 113(5): p. 3089-3094. 44. 施威任, 奈米及氫氧基磷灰石之合成及燒結. 國立成功大學 材料科學與工程學系 2007. 博士論文. 45. Dasgupta, S., et al., Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir, 2010. 26(7): p. 4958-64. 46. Fulmer, M.T. and P.W. Brown, Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J Mater Sci Mater Med, 1998. 9(4): p. 197-202. 47. F.Fievet, J.P.L., Solid State Ionics, 1989: p. 167. 48. K. N. Clson, R.L.C., J, Am. Ceram. Soc., 1959. 49. 林麗娟, X光繞射原理及其應用. 工業材料, 1994. 86. 50. Ruska, E., The early development of electron lenses and electron microscopy. Microsc Acta Suppl, 1980(Suppl 5): p. 1-140. 51. 汪建民, 材料分析, 中國材料學學會. 52. Silverst.Rm and J.O. Rodin, Spectrometric Identification of Organic Compounds on a Milligram Scale - Use of Complementary Information. Microchemical Journal, 1965. 9(3): p. 301-&. 53. Booth, F., Theory of electrokinetic effects. Nature, 1948. 161(4081): p. 83-6. 54. Wendlandt, W.W., Thermal analysis. 3rd ed. Chemical analysis,1986, New York: Wiley. xviii, 814 p. 55. Krohn, R.I., The colorimetric detection and quantitation of total protein. Curr Protoc Cell Biol, 2011. Appendix 3: p. 3H. 56. Perkampus, H.-H., UV-VIS spectroscopy and its applications. Springer laboratory1992, Berlin ; New York: Springer-Verlag. ix, 244 p. 57. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63. 58. Association of Medical Laboratory Immunologists., Journal of immunological methods, Elsevier.: Amsterdam,. p. v. 59. Ruzin, S.E., Plant microtechnique and microscopy1999, New York: Oxford University Press. xi, 322 p. 60. Shukla, R., et al., Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005. 21(23): p. 10644-54. 61. Royal Microscopical Society (Great Britain) and International Society for Stereology., Journal of microscopy, 1969, Blackwell Scientific: Oxford, UK.,. p. v. 62. 蔡佩珊, Pyridoxamine 能延緩STZ誘發之糖尿病鼠之動脈硬化及心室肥厚. 國立台灣大學醫學院 生理學研究所, 2008. 碩士論文. 63. Ramtoola, Controlled Release Biodegradable Nanoparticles Containing Insulin. United States Patent 5641515, 1997. 64. Ulyanov, V.P. and I.A. Donetsky, Differential Thermal-Analysis of Crystalline Insulin. Khimiko-Farmatsevticheskii Zhurnal, 1980. 14(4): p. 98-101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16331 | - |
| dc.description.abstract | 蛋白質等大分子藥物是未來醫藥的重點發展方向,目前此類藥物皆以注射為主。能夠以病人更易接受的方式給藥,將是大分子藥物能否成為未來藥物傳輸系統主流趨勢的要件。本研究目的在於發展出新穎的材料載藥模型—胰島素插入晶格間位之氫氧基磷灰石(insHAP),以陶瓷本身晶體結構載蛋白質藥物,並探討氫氧基磷灰石作為胰島素載體材料之特性。實驗主要分為材料研發、材料特性測試、載藥量測試、藥物釋放測試、體外細胞實驗與初步之動物實驗。為了避免氫氧基磷灰石合成之高溫環境造成胰島素變性,本研究發展出在室溫操作條件下利用單一步驟之二合水磷酸氫鈣水解法製備insHAP。insHAP粒徑分佈於865~1797 nm。透過insHAP之XRD分析、FTIR分析、SEM與TEM觀察,證實胰島素確實插入氫氧基磷灰石晶格間位。以TGA分析得到insHAP因胰島素分解所損失之重量為11.25%。BCA計算得insHAP載藥量為13.33%,有效包覆率為86.08%。藥物釋放測試顯示insHAP於鹼性環境模擬一般體液情況下僅釋放少量胰島素,於酸性環境模擬細胞溶小體內情況下氫氧基磷酸石很快被降解,胰島素大量被釋出。由WST-1與LDH試驗結果顯示insHAP不影響細胞增生與存活,也不會對細胞造成顯著毒性。TEM也觀察到含有insHAP之細胞溶小體,證實細胞會攝入insHAP。動物實驗顯示insHAP以高劑量肌肉注射於STZ誘導糖尿病之Wistar大鼠,血糖緩慢下降並能維持4日正常血糖。綜合以上結果, insHAP可作為胰島素傳遞釋放模型,此新型的藥物傳遞系統模型於未來將有潛力應用於插層螢光蛋白、抗體、生長因子等生物製劑,或插層標靶治療癌症藥物達到靶向效果,有機會成為新的藥物遞送系統選擇。 | zh_TW |
| dc.description.abstract | Protein and other macromolecular drugs have great potentials for the future development of medicine. However, most of these drugs are dosed by injection. It would become main trend if way of dosing macromolecular drugs can be more receptive to the patient. The purpose of this study is to develop a novel model of insulin-inserted hydroxyapatite (insHAP) and to prove whether crystal structure of hydroxtapatite could carry protein drugs. The experiment was divided into five parts: material synthesis and property testing, drug loading test, drug release test, in vitro studies and preliminary animal study. In order to avoid insulin denaturation, we develop a single step insHAP synthesis by hydrolysis of brushite (DCPD). insHAP size distribution is in the range of 865~1797 nm. Through XRD analysis, FTIR, SEM and TEM observations, we confirm that insulin is indeed inserted into hydroxyapatite lattice. TGA analysis shows the weight loss due to insulin decomposition is about 11.25%. BCA essay calculated drug loading of insHAP is 13.33% and drug entrapment efficiency is 86.08%. The drug release tests show insHAP only releases a small amount of insulin in the alkaline environment, which simulated the environment of general body fluids. On the other hand, hydroxyapatite was quickly degraded and had a great number of insulin release in the acidic environment, which simulated the environment inside lysosomes. In in vitro studies, WST-1 test shows there is no negative effect on cell viability and cell proliferation. The relatively low cytotoxicity of insHAP is proven by LDH test. Furthermore, we confirm by Cell TEM that insHAP could go through cellular uptake and get into lysosomes. Animal study indicates the blood glucose of STZ-induced diabetic Wistar rats after intramuscular injection of insHAP decreases slowly. It can maintain normal blood sugar for about 4-day period. Based on the above results, insHAP as insulin delivery model is a breakthrough for diabetes treatment. This novel drug delivery model will be potential in the future for carrying not only fluorescent protein, antibody, growth factor and other biological agents, but also cancer drugs for targeted therapy. This study offer s a new choice for protein drug delivery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:10:06Z (GMT). No. of bitstreams: 1 ntu-101-R98548061-1.pdf: 5255003 bytes, checksum: 862cded43a1574e4711b882acbcda11e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 第1章 緒論 1 1-1 藥物傳遞系統 1 1-1-1 藥物傳遞系統研究 1 1-1-2 常見投藥方式 2 1-1-3 藥物釋放系統類型 4 1-2 糖尿病 6 1-2-1 糖尿病類型 6 1-2-2 糖尿病併發症 7 1-2-3 糖尿病治療方式 7 1-3 胰島素 10 1-3-1 胰島素結構與作用 10 1-3-2 醫用胰島素類型與來源 11 1-3-3 胰島素投藥系統 12 1-3-4 胰島素注射 14 1-4 材料研究動機 17 1-5 研究目的 17 第2章 理論基礎 18 2-1 材料資訊與應用 18 2-1-1 生醫陶瓷 18 2-1-2 磷酸鈣鹽類 19 2-1-3 晶體學簡介 20 2-1-4 生物礦化 22 2-1-5 仿生陶瓷 24 2-2 材料介紹 25 2-2-1 氫氧基磷灰石 25 2-2-2 二合水磷酸氫鈣 28 2-2-3 優密林胰島素 29 2-3 材料製備與分析原理 29 2-3-1 二合水磷酸氫鈣水解 29 2-3-2 化學沉澱法 30 2-3-3 X光繞射分析(XRD) 31 2-3-4 穿透式電子顯微鏡觀察(TEM) 33 2-3-5 場發射掃描式電子顯微鏡觀察(FE-SEM) 34 2-3-6 紅外線光譜儀分析(FTIR) 34 2-3-7 粒徑與表面電位分析(Zetasizer) 34 2-4 材料載藥量測定方法與原理 36 2-4-1 熱重分析儀(TGA) 36 2-4-2 蛋白質濃度測定( BCA protein assay kit) 38 2-5 藥物釋放測試方法與原理 38 2-5-1 紫外光/可見光光譜儀(UV-Vis) 38 2-6 體外細胞實驗方法與原理 40 2-6-1 細胞存活檢測—WST-1試驗 40 2-6-2 細胞毒性檢測—LDH試驗 40 2-6-3 穿透式電顯樣本製備技術 41 第3章 實驗方法 43 3-1 實驗儀器 43 3-2 實驗藥品 44 3-3 製備溶液和實驗材料 45 3-4 實驗方法及流程 46 3-4-1 實驗架構 46 3-4-2 材料製備 48 3-5 材料分析與測試 49 3-5-1 X光繞射操作 49 3-5-2 場發射掃描式電子顯微鏡操作 49 3-5-3 穿透式電子顯微鏡操作 49 3-5-4 紅外線光譜儀操作 49 3-5-5 粒徑暨界面電位量測儀操作 50 3-6 材料載藥量測定 50 3-6-1 熱重分析儀操作 50 3-6-2 蛋白質濃度測定 50 3-7 藥物釋放實驗 50 3-7-1 紫外光/可見光光譜儀操作 50 3-8 體外細胞實驗 51 3-8-1 3T3細胞株培養 51 3-8-2 WST-1試驗 52 3-8-3 LDH試驗 52 3-8-4 RAW 264.7細胞株培養 53 3-8-5 細胞切片樣本製備 53 3-9 動物實驗 55 3-9-1 實驗動物製備 55 3-9-2 實驗動物分組 55 3-9-3 血糖濃度測定 55 第4章 實驗結果 57 4-1 材料粉末性質分析 57 4-1-1 X光繞射分析結果 57 4-1-2 掃描式電子顯微鏡觀察 60 4-1-3 穿透式電子顯微鏡觀察 64 4-1-4 紅外線光譜儀分析結果 68 4-1-5 粒徑與表面電位分析結果 69 4-2 材料載藥量計算 71 4-2-1 熱重分析測試結果 71 4-2-2 蛋白質濃度測定結果 73 4-3 藥物釋放實驗結果 75 4-4 體外細胞試驗 78 4-4-1 WST-1試驗結果 78 4-4-2 LDH試驗結果 79 4-4-3 細胞於穿透式電子顯微鏡觀察 80 4-5 動物實驗 83 第5章 討論 85 5-1 製程討論 85 5-2 insHAP性質討論 86 5-3 胰島素加入量對insHAP載藥量影響 88 5-4 酸鹼環境對insHAP藥物釋放機制影響 90 5-5 動物實驗討論 91 第6章 結論 93 第7章 未來展望 94 參考文獻 95 附錄 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物礦化 | zh_TW |
| dc.subject | 藥物傳遞系統 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | 胰島素 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 晶格間位 | zh_TW |
| dc.subject | insulin | en |
| dc.subject | biomineralization | en |
| dc.subject | hydroxyapatite lattice | en |
| dc.subject | drug delivery systems | en |
| dc.subject | diabetes | en |
| dc.title | 胰島素插入晶格間位之氫氧基磷灰石作為蛋白質藥物傳遞釋放模型應用於糖尿病治療 | zh_TW |
| dc.title | Insulin-inserted Hydroxyapatite as a Protein Drug Delivery Model for Diabetes Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭士民(Shyh-Ming Kuo),張淑真(Shwu-Jen Chang),楊禎明(Jen-Ming Yang),陳克紹(Ko-Shao Chen) | |
| dc.subject.keyword | 藥物傳遞系統,糖尿病,胰島素,氫氧基磷灰石,晶格間位,生物礦化, | zh_TW |
| dc.subject.keyword | drug delivery systems,diabetes,insulin,hydroxyapatite lattice,biomineralization, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 5.13 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
