Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳漢忠(Han-Chung Wu)
dc.contributor.authorMin-Siou Sunen
dc.contributor.author孫敏修zh_TW
dc.date.accessioned2021-06-07T18:09:39Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-10
dc.identifier.citationAbraham, B.K., Fritz, P., McClellan, M., Hauptvogel, P., Athelogou, M., and Brauch, H. (2005). Prevalence of CD44(+)/CD24(-/low) cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11, 1154-1159.
Aga, M., Bradley, J.M., Keller, K.E., Kelley, M.J., and Acott, T.S. (2008). Specialized Podosome- or Invadopodia-like Structures (PILS) for Focal Trabecular Meshwork Extracellular Matrix Turnover. Invest Ophthalmol Vis Sci 49, 5353-5365.
Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100, 3983-3988.
Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E., and Block, M.R. (2009). Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci 122, 3037-3049.
Ammer, A.G., and Weed, S.A. (2008). Cortactin branches out: Roles in regulating protrusive actin dynamics. Cell Motil Cytoskeleton 65, 687-707.
Ayala, I., Giacchetti, G., Caldieri, G., Attanasio, F., Mariggio, S., Tete, S., Polishchuk, R., Castronovo, V., and Buccione, R. (2009). Faciogenital Dysplasia Protein Fgd1 Regulates Invadopodia Biogenesis and Extracellular Matrix Degradation and Is Up-regulated in Prostate and Breast Cancer. Cancer Res 69, 747-752.
Bao, S.D., Wu, Q.L., McLendon, R.E., Hao, Y.L., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760.
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
Baylin, S.B. (1997). Tying it all together: epigenetics, genetics, cell cycle, and cancer. Science 277, 1948-1949.
Boureux, A., Vignal, E., Faure, S., and Fort, P. (2007). Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol Biol Evol 24, 203-216.
Buccione, R., Caldieri, G., and Ayala, I. (2009). Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28, 137-149.
Bustelo, X.R., Sauzeau, V., and Berenjeno, I.M. (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29, 356-370.
Butta, N., Larrucea, S., Alonso, S., Rodriguez, R.B., Arias-Salgado, E.G., Ayuso, M.S., Gonzalez-Manchon, C., and Parrilla, R. (2006). Role of transcription factor Sp1 and CpG methylation on the regulation of the human podocalyxin gene promoter. BMC Mol Biol 7.
Cairns, P. (2007). Gene methylation and early detection of genitourinary cancer: the road ahead. Nature Reviews Cancer 7, 531-543.
Casey, G., Neville, P.J., Liu, X., Plummer, S.J., Cicek, M.S., Krumroy, L.M., Curran, A.P., McGreevy, M.R., Catalona, W.J., Klein, E.A., et al. (2006). Podocalyxin variants and risk of prostate cancer and tumor aggressiveness. Hum Mol Genet 15, 735-741.
Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer 2, 563-572.
Chen, C.J., You, S.L., Lin, L.H., Hsu, W.L., and Yang, Y.W. (2002). Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 32, S66-S81.
Chen, W.T. (1989). Proteolytic Activity of Specialized Surface Protrusions Formed at Rosette Contact Sites of Transformed-Cells. J Exp Zool 251, 167-185.
Cheung, H.H., Davis, A.J., Lee, T.L., Pang, A.L., Nagrani, S., Rennert, O.M., and Chan, W.Y. (2011). Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30, 3404-3415.
Choo, A.B., Tan, H.L., Ang, S.N., Fong, W.J., Chin, A., Lo, J., Zheng, L., Hentze, H., Philp, R.J., Oh, S.K.W., et al. (2008). Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26, 1454-1463.
Cipollone, J.A., Graves, M.L., Kobel, M., Kalloger, S.E., Poon, T., Gilks, C.B., McNagny, K.M., and Roskelley, C.D. (2012). The anti-adhesive mucin podocalyxin may help initiate the transperitoneal metastasis of high grade serous ovarian carcinoma. Clin Exp Metastasis 29, 239-252.
Cosen-Binker, L.I., and Kapus, A. (2006). Cortactin: the gray eminence of the cytoskeleton. Physiology 21, 352-361.
Costello, J.F., and Plass, C. (2001). Methylation matters. J Med Genet 38, 285-303.
Doyonnas, R., Kershaw, D.B., Duhme, C., Merkens, H., Chelliah, S., Graf, T., and McNagny, K.M. (2001). Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 194, 13-27.
Eckert, M.A., Lwin, T.M., Chang, A.T., Kim, J., Danis, E., Ohno-Machado, L., and Yang, J. (2011). Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19, 372-386.
Edlund, M., Sung, S.Y., and Chung, L.W. (2004). Modulation of prostate cancer growth in bone microenvironments. J Cell Biochem 91, 686-705.
Egeblad, M., Rasch, M.G., and Weaver, V.M. (2010). Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22, 697-706.
Ehrlich, M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21, 5400-5413.
Elkin, M., and Vlodavsky, I. (2001). Tail vein assay of cancer metastasis. Curr Protoc Cell Biol 19, 1-7.
Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C., and De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15, 504-514.
Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111, 47-54.
Fidler, I.J., and Talmadge, J.E. (1986). Evidence That Intravenously Derived Murine
Pulmonary Melanoma Metastases Can Originate from the Expansion of a Single Tumor-Cell. Cancer Res 46, 5167-5171.
Friedl, P., and Brocker, E.B. (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57, 41-64.
Friedl, P., and Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer 3, 362-374.
Friedl, P., and Wolf, K. (2009). Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev 28, 129-135.
Fukasawa, H., Obayashi, H., Schmieder, S., Lee, J., Ghosh, P., and Farquhar, M.G. (2011). Phosphorylation of podocalyxin (Ser415) Prevents RhoA and ezrin activation and disrupts its interaction with the actin cytoskeleton. Am J Pathol 179, 2254-2265.
Gatenby, R.A., and Gillies, R.J. (2008). Hypoxia and metabolism - Opinion - A microenvironmental model of carcinogenesis. Nature Reviews Cancer 8, 56-61.
Ginestier, C., Hur, M.H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C.G., Liu, S.L., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555-567.
Glenney, J.R., Jr., and Zokas, L. (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108, 2401-2408.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hayashida, T., Jinno, H., Kitagawa, Y., and Kitajima, M. (2011). Cooperation of cancer stem cell properties and epithelial-mesenchymal transition in the establishment of breast cancer metastasis. J Oncol 2011, 591427.
Herman, J.G., Graff, J.R., Myohanen, S., Nelkin, B.D., and Baylin, S.B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 9821-9826.
Hermann, P.C., Huber, S.L., Herrler, T., Aicher, A., Ellwart, J.W., Guba, M., Bruns, C.J., and Heeschen, C. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313-323.
Hess, K.R., Varadhachary, G.R., Taylor, S.H., Wei, W., Raber, M.N., Lenzi, R., and Abbruzzese, J.L. (2006). Metastatic patterns in adenocarcinoma. Cancer 106, 1624-1633.
Houghton, J., Stoicov, C., Nomura, S., Rogers, A.B., Carlson, J., Li, H., Cai, X., Fox, J.G., Goldenring, J.R., and Wang, T.C. (2004). Gastric cancer originating from bone marrow-derived cells. Science 306, 1568-1571.
Hsu, Y.H., Lin, W.L., Hou, Y.T., Pu, Y.S., Shun, C.T., Chen, C.L., Wu, Y.Y., Chen, J.Y., Chen, T.H., and Jou, T.S. (2010). Podocalyxin EBP50 ezrin molecular complex enhances the metastatic potential of renal cell carcinoma through recruiting Rac1 guanine nucleotide exchange factor ARHGEF7. Am J Pathol 176, 3050-3061.
Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415-428.
Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer 9, 239-252.
Kamb, A. (2005). What's wrong with our cancer models? Nature Reviews Drug Discovery 4, 161-165.
Kanner, S.B., Reynolds, A.B., Vines, R.R., and Parsons, J.T. (1990). Monoclonal-Antibodies to Individual Tyrosine-Phosphorylated Protein Substrates of Oncogene-Encoded Tyrosine Kinases. Proc Natl Acad Sci U S A 87, 3328-3332.
Kelley, L.C., Shahab, S., and Weed, S.A. (2008). Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer. Clin Exp Metastasis 25, 289-304.
Kerjaschki, D., Sharkey, D.J., and Farquhar, M.G. (1984). Identification and Characterization of Podocalyxin - the Major Sialoprotein of the Renal Glomerular Epithelial-Cell. J Cell Biol 98, 1591-1596.
Kershaw, D.B., Thomas, P.E., Wharram, B.L., Goyal, M., Wiggins, J.E., Whiteside, C.I., and Wiggins, R.C. (1995). Molecular cloning, expression, and characterization of podocalyxin-like protein 1 from rabbit as a transmembrane protein of glomerular podocytes and vascular endothelium. J Biol Chem 270, 29439-29446.
Khanna, C., and Hunter, K. (2005). Modeling metastasis in vivo. Carcinogenesis 26, 513-523.
Kristiansen, G., Winzer, K.J., Mayordomo, E., Bellach, J., Schluns, K., Denkert, C., Dahl, E., Pilarsky, C., Altevogt, P., Guski, H., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9, 4906-4913.
Laird, P.W. (2003). The power and the promise of DNA methylation markers. Nature Reviews Cancer 3, 253-266.
Larsson, A., Johansson, M.E., Wangefjord, S., Gaber, A., Nodin, B., Kucharzewska, P., Welinder, C., Belting, M., Eberhard, J., Johnsson, A., et al. (2011). Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer 105, 666-672.
Li, F., Tiede, B., Massague, J., and Kang, Y. (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17, 3-14.
Liu, R., Wang, X.H., Chen, G.Y., Dalerba, P., Gurney, A., Hoey, T., Sherlock, G., Lewicki, J., Shedden, K., and Clarke, M.F. (2007). The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356, 217-226.
Man, S., Munoz, R., and Kerbel, R.S. (2007). On the development of models in mice of advanced visceral metastatic disease for anti-cancer drug testing. Cancer Metastasis Rev 26, 737-747.
McLean, G.W., Carragher, N.O., Avizienyte, E., Evans, J., Brunton, V.G., and Frame, M.C. (2005). The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature Reviews Cancer 5, 505-515.
Meng, X.B., Ezzati, P., and Wilkins, J.A. (2011). Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition. PLoS One 6.
Murphy, D.A., and Courtneidge, S.A. (2011). The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nature Reviews Molecular Cell Biology 12, 413-426.
Ney, J.T., Zhou, H., Sipos, B., Buttner, R., Chen, X., Kloppel, G., and Gutgemann, I. (2007). Podocalyxin-like protein 1 expression is useful to differentiate pancreatic ductal adenocarcinomas from adenocarcinomas of the biliary and gastrointestinal tracts. Hum Pathol 38, 359-364.
Nguyen, D.X., Bos, P.D., and Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nature Reviews Cancer 9, 274-284.
Nguyen, L.V., Vanner, R., Dirks, P., and Eaves, C.J. (2012). Cancer stem cells: an evolving concept. Nature Reviews Cancer 12, 133-143.
Nielsen, J.S., and McNagny, K.M. (2009). The role of podocalyxin in health and disease. J Am Soc Nephrol 20, 1669-1676.
O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110.
Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
Reddy, B.Y., Lim, P.K., Silverio, K., Patel, S.A., Won, B.W., and Rameshwar, P. (2012). The Microenvironmental Effect in the Progression, Metastasis, and Dormancy of Breast Cancer: A Model System within Bone Marrow. Int J Breast Cancer 2012, 721659.
Ridley, A.J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16, 522-529.
Sassetti, C., Van Zante, A., and Rosen, S.D. (2000). Identification of endoglycan, a member of the CD34/podocalyxin family of sialomucins. J Biol Chem 275, 9001-9010.
Schaller, M.D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472.
Schlaepfer, D.D., and Mitra, S.K. (2004). Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14, 92-101.
Schopperle, W.M., and DeWolf, W.C. (2007). The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25, 723-730.
Schopperle, W.M., Kershaw, D.B., and DeWolf, W.C. (2003). Human embryonal carcinoma tumor antigen, Gp200/GCTM-2, is podocalyxin. Biochem Biophys Res Commun 300, 285-290.
Schopperle, W.M., Lee, J.M., and DeWolf, W.C. (2010). The human cancer and stem cell marker podocalyxin interacts with the glucose-3-transporter in malignant pluripotent stem cells. Biochem Biophys Res Commun 398, 372-376.
Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.L., Wu, L., Lindeman, G.J., and Visvader, J.E. (2006). Generation of a functional mammary gland from a single stem cell. Nature 439, 84-88.
Shapiro, I.M., Cheng, A.W., Flytzanis, N.C., Balsamo, M., Condeelis, J.S., Oktay, M.H., Burge, C.B., and Gertler, F.B. (2011). An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 7, e1002218.
Sharpless, N.E., and DePinho, R.A. (2006). Model organisms - The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Reviews Drug Discovery 5, 741-754.
Sheetz, M.P., Felsenfeld, D., Galbraith, C.G., and Choquet, D. (1999). Cell migration as a five-step cycle. Cell Behaviour: Control and Mechanism of Motility, 233-243.
Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C.H., Goulet, R., Badve, S., and Nakshatri, H. (2006). CD44(+)/CD24(-) breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research 8.
Shi, Q., Hjelmeland, A.B., Keir, S.T., Song, L.H., Wickman, S., Jackson, D., Ohmori, O., Bigner, D.D., Friedman, H.S., and Rich, J.N. (2007). A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinog 46, 488-496.
Slack-Davis, J.K., Martin, K.H., Tilghman, R.W., Iwanicki, M., Ung, E.J., Autry, C., Luzzio, M.J., Cooper, B., Kath, J.C., Roberts, W.G., et al. (2007). Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282, 14845-14852.
Smith-Pearson, P.S., Greuber, E.K., Yogalingam, G., and Pendergast, A.M. (2010). Abl Kinases Are Required for Invadopodia Formation and Chemokine-induced Invasion. J Biol Chem 285, 40201-40211.
Somasiri, A., Nielsen, J.S., Makretsov, N., McCoy, M.L., Prentice, L., Gilks, C.B., Chia, S.K., Gelmon, K.A., Kershaw, D.B., Huntsman, D.G., et al. (2004). Overexpression of the anti-adhesin podocalyxin is an independent predictor of breast cancer progression. Cancer Res 64, 5068-5073.
Stanhope-Baker, P., Kessler, P.M., Li, W.L., Agarwal, M.L., and Williams, B.R.G. (2004). The Wilms tumor suppressor-1 target gene podocalyxin is transcriptionally repressed by p53. J Biol Chem 279, 33575-33585.
Su, Y., Qiu, Q., Zhang, X.Q., Jiang, Z.R., Leng, Q.X., Liu, Z.Q., Stass, S.A., and Jiang, F. (2010). Aldehyde Dehydrogenase 1 A1-Positive Cell Population Is Enriched in Tumor-Initiating Cells and Associated with Progression of Bladder Cancer. Cancer Epidemiology Biomarkers & Prevention 19, 327-337.
Takeda, T., Go, W.Y., Orlando, R.A., and Farquhar, M.G. (2000). Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11, 3219-3232.
Talmadge, J.E., Singh, R.K., Fidler, I.J., and Raz, A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170, 793-804.
Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A. (2009). Epithelial-Mesenchymal Transitions in Development and Disease. Cell 139, 871-890.
Visvader, J.E., and Lindeman, G.J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer 8, 755-768.
Weaver, A.M. (2006). Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis 23, 97-105.
Weed, S.A., Karginov, A.V., Schafer, D.A., Weaver, A.M., Kinley, A.W., Cooper, J.A., and Parsons, J.T. (2000). Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151, 29-40.
Welm, A.L., Kim, S., Welm, B.E., and Bishop, J.M. (2005). MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci U S A 102, 4324-4329.
Wu, H., and Parsons, J.T. (1993). Cortactin, an 80/85-Kilodalton Pp60(Src) Substrate, Is a Filamentous Actin-Binding Protein Enriched in the Cell Cortex. J Cell Biol 120, 1417-1426.
Wu, H., Reynolds, A.B., Kanner, S.B., Vines, R.R., and Parsons, J.T. (1991). Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11, 5113-5124.
Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., Segall, J., Eddy, R., Miki, H., Takenawa, T., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168, 441-452.
Yamazaki, D., Kurisu, S., and Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Sci 96, 379-386.
Yang, X., Yan, L., and Davidson, N.E. (2001). DNA methylation in breast cancer. Endocr Relat Cancer 8, 115-127.
Yasuoka, H., Tsujimoto, M., Hirokawa, M., Tori, M., Nakahara, M., Miyauchi, A., Kodama, R., Sanke, T., and Nakamura, Y. (2008). Podocalyxin expression in undifferentiated thyroid carcinomas. J Clin Pathol 61, 1228-1229.
Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis 21, 497-503.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16320-
dc.description.abstract癌症的轉移是造成癌症死亡的主要原因,轉移癌主要是因為有一小族群的細胞離開原位癌,散佈到其他器官造成。有之前的假說造成癌症轉移的細胞可以稱之為癌症幹細胞。癌症幹細胞的特性類似於胚胎幹細胞,但癌症幹細胞主要會造成腫瘤的起始,細胞自我更新以及癌症轉移。但在目前還沒有很明確的生物標記可以去分離出這些癌症幹細胞。除此之外,癌症幹細胞是如何造成癌症轉移,其作用的機制目前還未釐清。在我們先前的研究中,我們利用融合瘤技術生產出可以專一性標的到胚胎幹細胞以及癌細胞的抗體。我們發現PODXL 會大量表現在胚胎幹細胞以及一些癌細胞當中。在我們的研究中發現,Podocalyxin (PODXL)可能可以作為一個癌症幹細胞的生物標記,因為其表現會調控癌症腫瘤球的形成。另外我們分析各種臨床檢體以及細胞株之後發現,PODXL的表現量與癌症淋巴轉移以及惡性程度呈現正相關。並且在較惡性的癌症中,PODXL的甲基化程度會有較低的情形產生。而大量表現的PODXL會控制著細胞的移動以及腫瘤自我更新能力。接著我們利用短夾型RNA(shRNA)抑制PODXL在細胞的表現,發現其生長、移動、F肌動蛋白(F-actin)的分佈及 FAK或Paxillin的活化均有明顯受到抑制的現象。在癌症轉移老鼠模型當中,發現抑制PODXL表現後會降低癌細胞轉移的能力。此外PODXL表現降低會影響皮層肌動蛋白(Cortactin)的磷酸化,並且降低invadopodia的形成以及gelatin的降解。綜合以上結果顯示,PODXL可能在細胞移動、癌症轉移以及腫瘤幹細胞特性當中扮演著重要的角色。因此PODXL未來將有潛力成為新的生物標的分子去辨識癌症幹細胞以及治療癌症轉移。zh_TW
dc.description.abstractCancer stem cells (CSCs) are involved in tumor-initiation, self-renewal, and metastasis. CSCs share many similar biological properties as the embryonic stem cells (ESCs). However, currently there still lacks biomarkers that can specifically identify CSCs. More importantly, the underlying signaling mechanism of CSCs leading to metastasis is still unclear. In the present study, we used hybridoma to identify cell surface biomarkers that are expressed on both ESCs and cancer cells. Podocalyxin-like 1 (PODXL) is a CD34-related cell surface molecule with anti-adhesive property. We found that PODXL to be abundantly expressed on both ESCs and cancer cells. The expression of PODXL was upregulated in tumorsphere, and was found to be associated with stem/progenitor markers. Epigenetic regulation through demethylation on PODXL gene was correlated with both PODXL expression and tumor malignancy. PODXL was correlated with lymph node metastasis and cancer malignancy. Furthermore, overexpression of PODXL was associated with cancer cell mobility and tumor self-renewal. Conversely, knockdown of PODXL caused F-actin depolarization, suppressed FAK and Paxillin activation, and inhibited tumor migration and invasion. Suppression of PODXL not only reduced tumor cell proliferation and colony formation, but it also inhibited tumor dissemination in the metastasis mouse model. Moreover, suppression of PODXL downregulated cortactin phosphorylation, and reduced invadopodia formation and gelatin degradation. Taken together, our data demonstrate that PODXL plays an important role in cell mobility, tumor metastasis and tumor stemness, and indicate that PODXL might be served as a specific biomarker for cancer stem cells, and a potential therapeutic target for cancer metastasis.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:09:39Z (GMT). No. of bitstreams: 1
ntu-101-R99450015-1.pdf: 14455585 bytes, checksum: c0e27703cad9708bcaaae576e314ddb1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 ……………………………………………………………………………… i
中文摘要 …………………………………………………………………………. ii
Abstract …………………………………………………………………………. iii
Contents …………………………………………………………………………. iv
Content of figures and tables …………………………………………………… vi
List of abbreviations …………………………………………………………….. vii
Introduction …………………………………………………………….............. 1
1.1 Epidemiology and pathogenesis of cancer ………………………………. 1
1.2 Tumor microenvironment promotes cancer progression and metastasis .... 2
1.3 Role of Cancer stem cell in tumor metastasis ……………………………. 3
1.4 Identification of cancer stem cell ............................................................... 4
1.5 Mechanisms of cancer cell migration and invasion …............................... 6
1.6 The role of cytoskeleton arrangement in tumor progression ……………... 7
1.7 Invodopodia formation of cellular invasiveness ………………………….. 9
1.8 Animal model of tumor metastasis ………………………………………. 10
1.9 Validation of the functional role of PODXL in cancer progression ........... 12
Materials and Methods ......................................................................................... 14
2.1 Cell lines and cell culture ………………………………………………... 14
2.2 Transduction with lentiviral vectors expressing shRNA ………………… 15
2.3 Colony-forming assay …………………………………………………… 16
2.4 Cell proliferation assay …………………………………………………… 16
2.5 Transwell of cell migration and invasion assay ………………………….. 16
2.6 Time-lapse migration microscopy ………………………………………... 17
2.7 Real-time quantitative PCR assays ………………………………………. 18
2.8 Immunoprecipitation (IP) and Western blotting (WB) ………………….. 19
2.9 Immunofluorescence assay (IFA) ………………………………………... 21
2.10 Immunohistochemistry (IHC) ………………………………………….. 21
2.11 Tumor sphere formation culture assay ………………………………… 23
2.12 Flow cytometry …………………………………………………………. 23
2.13 Invadopodia and matrix-degradation assays ……………………………. 24
2.14 Detection of PODXL methylation ………………………………………. 25
2.15 Animal studies …………………………………………………………. 26
2.16 Statistical analysis ………………………………………………………. 27
Results …………………………………………………………………………... 28
3-1 PODXL plays an important role in cell stemness of various cancer cells .. 28
3-2 Elevated expression of PODXL in various human invasive cancers ……. 29
3-3 Epigenetic regulation via DNA methylation on PODXL ………………. 30
3-4 Expression of PODXL correlates with tumor migration and invasion ….. 31
3-5 Knockdown of PODXL inhibits cell growth and colony formation in vitro… 33
3-6 Validation of the metastatic role of PODXL in metastatic animal models….. 34
3-7 PODXL mediates actin cytoskeleton rearrangement correlated by cortactin. 34
3-8 PODXL mediated invadopodia formation and matrix degradation ……... 35
3-9 PODXL correlated with cortactin regulates tumor metastasis ………….. 37
3-10 Protein interaction of PODXL and cortactin ………………………….. 38
Discussion ………………………………………………………………………... 39
References ………………………………………………………………………... 59
Figure 1. Expression of PODXL is associated with stemness properties in cancer
cells ………........................................................................................................... 46
Figure 2. Overexpression of PODXL associated with tumor metastasis …….... 47
Figure 3. PODXL is regulated by methylation in cancer cells ……………....... 48
Figure 4. PODXL expression affects cell motility in various cancer cell lines ... 49
Figure 5. PODXL regulates cell motility in metastatic tumor sub-lines ............ 50
Figure 6. PODXL regulats cell growth in vitro ……………………………...... 51
Figure 7. PODXL regulates cancer metastasis in mouse models ……………… 52
Figure 8. PODXL regulates F-actin polymerization and cortactin activation ..... 53
Figure 9. Knockdown of PODXL expression impairs invadopodia formation and
ECM degradation ……………………………………………………………..... 54
Figure 10. Knockdown of PODXL and cortactin influences tumor invasion and
metastatic ability ................................................................................................. 56
Figure 11. PODXL interacts with coractin …………………………………..... 57
Table 1. Immunohistochemical analysis of the reactivity of anti-PODXL
antibody with human oral squamous carcinoma cancers ……………………… 58
dc.language.isoen
dc.subject癌症幹細胞zh_TW
dc.subject癌症轉移zh_TW
dc.subject足糖萼蛋白Podocalyxinzh_TW
dc.subject皮層肌動蛋白Cortactinzh_TW
dc.subject侵入偽足形成zh_TW
dc.subjectCSCen
dc.subjectinvadopodia formationen
dc.subjectcortactinen
dc.subjectPODXLen
dc.subjectCancer metastasisen
dc.title探討Podocalyxin-like 1於癌細胞幹細胞特性以及轉移中扮演之功能性角色zh_TW
dc.titleStudy the Functional Roles of Podocalyxin-like 1 in Stemness and Metastasis in Cancer Cellen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor樓國隆(Kuo-Lung Lou)
dc.contributor.oralexamcommittee呂仁(Ren Lu)
dc.subject.keyword癌症幹細胞,癌症轉移,足糖萼蛋白Podocalyxin,皮層肌動蛋白Cortactin,侵入偽足形成,zh_TW
dc.subject.keywordCSC,Cancer metastasis,PODXL,cortactin,invadopodia formation,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2012-07-10
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
14.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved