請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃銓珍(Chang-Jen?Huang) | |
| dc.contributor.author | Chih-Ting Shih | en |
| dc.contributor.author | 施繼庭 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:09:37Z | - |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-10 | |
| dc.identifier.citation | Arber, S., Halder, G., and Caroni, P. (1994). Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 79, 221-231.
Asai, K., Yang, G.P., Geng, Y.J., Takagi, G., Bishop, S., Ishikawa, Y., Shannon, R.P., Wagner, T.E., Vatner, D.E., Homcy, C.J., et al. (1999). Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. The Journal of clinical investigation 104, 551-558. Bach, I. (2000). The LIM domain: regulation by association. Mechanisms of development 91, 5-17. Beckerle, M.C. (1997). Zyxin: zinc fingers at sites of cell adhesion. BioEssays : news and reviews in molecular, cellular and developmental biology 19, 949-957. Behr, R., and Weinbauer, G.F. (2001). cAMP response element modulator (CREM): an essential factor for spermatogenesis in primates? International journal of andrology 24, 126-135. Bovill, E., Westaby, S., Crisp, A., Jacobs, S., and Shaw, T. (2009). Reduction of four-and-a-half LIM-protein 2 expression occurs in human left ventricular failure and leads to altered localization and reduced activity of metabolic enzymes. The Journal of thoracic and cardiovascular surgery 137, 853-861. Brown, S., McGrath, M.J., Ooms, L.M., Gurung, R., Maimone, M.M., and Mitchell, C.A. (1999). Characterization of two isoforms of the skeletal muscle LIM protein 1, SLIM1. Localization of SLIM1 at focal adhesions and the isoform slimmer in the nucleus of myoblasts and cytoplasm of myotubes suggests distinct roles in the cytoskeleton and in nuclear-cytoplasmic communication. The Journal of biological chemistry 274, 27083-27091. Chan, K.K., Tsui, S.K., Lee, S.M., Luk, S.C., Liew, C.C., Fung, K.P., Waye, M.M., and Lee, C.Y. (1998). Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene 210, 345-350. Chen, D.H., Raskind, W.H., Parson, W.W., Sonnen, J.A., Vu, T., Zheng, Y., Matsushita, M., Wolff, J., Lipe, H., and Bird, T.D. (2010). A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations. Journal of the neurological sciences 296, 22-29. Chu, P.H., Bardwell, W.M., Gu, Y., Ross, J., Jr., and Chen, J. (2000a). FHL2 (SLIM3) is not essential for cardiac development and function. Molecular and cellular biology 20, 7460-7462. Chu, P.H., Ruiz-Lozano, P., Zhou, Q., Cai, C., and Chen, J. (2000b). Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mechanisms of development 95, 259-265. Cowling, B.S., McGrath, M.J., Nguyen, M.A., Cottle, D.L., Kee, A.J., Brown, S., Schessl, J., Zou, Y., Joya, J., Bonnemann, C.G., et al. (2008). Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. The Journal of cell biology 183, 1033-1048. Dawid, I.B., Breen, J.J., and Toyama, R. (1998). LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends in genetics : TIG 14, 156-162. de Felipe, P., Hughes, L.E., Ryan, M.D., and Brown, J.D. (2003). Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. The Journal of biological chemistry 278, 11441-11448. Fimia, G.M., De Cesare, D., and Sassone-Corsi, P. (2000). A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM. Molecular and cellular biology 20, 8613-8622. Florini, J.R., Ewton, D.Z., and Coolican, S.A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine reviews 17, 481-517. Freyd, G., Kim, S.K., and Horvitz, H.R. (1990). Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature 344, 876-879. Fung, Y.W., Wang, R., and Liew, C.C. (1996). Characterization of a human cardiac gene which encodes for a LIM domain protein and is developmentally expressed in myocardial development. Journal of molecular and cellular cardiology 28, 1203-1210. Gaussin, V., Tomlinson, J.E., Depre, C., Engelhardt, S., Antos, C.L., Takagi, G., Hein, L., Topper, J.N., Liggett, S.B., Olson, E.N., et al. (2003). Common genomic response in different mouse models of beta-adrenergic-induced cardiomyopathy. Circulation 108, 2926-2933. Genini, M., Schwalbe, P., Scholl, F.A., Remppis, A., Mattei, M.G., and Schafer, B.W. (1997). Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA and cell biology 16, 433-442. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 228, 30-40. Hwang, D.M., Dempsey, A.A., Lee, C.Y., and Liew, C.C. (2000). Identification of differentially expressed genes in cardiac hypertrophy by analysis of expressed sequence tags. Genomics 66, 1-14. Hwang, D.M., Dempsey, A.A., Wang, R.X., Rezvani, M., Barrans, J.D., Dai, K.S., Wang, H.Y., Ma, H., Cukerman, E., Liu, Y.Q., et al. (1997). A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation 96, 4146-4203. Johannessen, M., Moller, S., Hansen, T., Moens, U., and Van Ghelue, M. (2006). The multifunctional roles of the four-and-a-half-LIM only protein FHL2. Cellular and molecular life sciences : CMLS 63, 268-284. Jurata, L.W., and Gill, G.N. (1998). Structure and function of LIM domains. Current topics in microbiology and immunology 228, 75-113. Kadrmas, J.L., and Beckerle, M.C. (2004). The LIM domain: from the cytoskeleton to the nucleus. Nature reviews Molecular cell biology 5, 920-931. Karlsson, O., Thor, S., Norberg, T., Ohlsson, H., and Edlund, T. (1990). Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344, 879-882. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. Kong, Y., Flick, M.J., Kudla, A.J., and Konieczny, S.F. (1997). Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Molecular and cellular biology 17, 4750-4760. Kong, Y., Shelton, J.M., Rothermel, B., Li, X., Richardson, J.A., Bassel-Duby, R., and Williams, R.S. (2001). Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation 103, 2731-2738. Krishnamurthy, G., Patberg, K.W., Obreztchikova, M.N., Rybin, A.V., and Rosen, M.R. (2004). Developmental evolution of the delayed rectifier current IKs in canine heart appears dependent on the beta subunit minK. Heart rhythm : the official journal of the Heart Rhythm Society 1, 704-711. Kupershmidt, S., Yang, I.C., Sutherland, M., Wells, K.S., Yang, T., Yang, P., Balser, J.R., and Roden, D.M. (2002). Cardiac-enriched LIM domain protein fhl2 is required to generate I(Ks) in a heterologous system. Cardiovascular research 56, 93-103. Labouesse, M., and Georges-Labouesse, E. (2003). Cell adhesion: parallels between vertebrate and invertebrate focal adhesions. Current biology : CB 13, R528-530. Lange, S., Auerbach, D., McLoughlin, P., Perriard, E., Schafer, B.W., Perriard, J.C., and Ehler, E. (2002). Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. Journal of cell science 115, 4925-4936. Lardenois, A., Chalmel, F., Demougin, P., Kotaja, N., Sassone-Corsi, P., and Primig, M. (2009). Fhl5/Act, a CREM-binding transcriptional activator required for normal sperm maturation and morphology, is not essential for testicular gene expression. Reproductive biology and endocrinology : RB&E 7, 133. Lee, S.M., Li, H.Y., Ng, E.K., Or, S.M., Chan, K.K., Kotaka, M., Chim, S.S., Tsui, S.K., Waye, M.M., Fung, K.P., et al. (1999). Characterization of a brain-specific nuclear LIM domain protein (FHL1B) which is an alternatively spliced variant of FHL1. Gene 237, 253-263. Liang, L., Zhang, H.W., Liang, J., Niu, X.L., Zhang, S.Z., Feng, L., Liang, Y.M., and Han, H. (2008). KyoT3, an isoform of murine FHL1, associates with the transcription factor RBP-J and represses the RBP-J-mediated transactivation. Biochimica et biophysica acta 1779, 805-810. Linke, W.A., Rudy, D.E., Centner, T., Gautel, M., Witt, C., Labeit, S., and Gregorio, C.C. (1999). I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. The Journal of cell biology 146, 631-644. Lumsden, A. (1995). Neural development. A 'LIM code' for motor neurons? Current biology : CB 5, 491-495. Macalma, T., Otte, J., Hensler, M.E., Bockholt, S.M., Louis, H.A., Kalff-Suske, M., Grzeschik, K.H., von der Ahe, D., and Beckerle, M.C. (1996). Molecular characterization of human zyxin. The Journal of biological chemistry 271, 31470-31478. Matsumoto, Y., Hayashi, T., Inagaki, N., Takahashi, M., Hiroi, S., Nakamura, T., Arimura, T., Nakamura, K., Ashizawa, N., Yasunami, M., et al. (2005). Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. Journal of muscle research and cell motility 26, 367-374. Mizuno, K., Okano, I., Ohashi, K., Nunoue, K., Kuma, K., Miyata, T., and Nakamura, T. (1994). Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9, 1605-1612. Molkentin, J.D., and Olson, E.N. (1996). Defining the regulatory networks for muscle development. Current opinion in genetics & development 6, 445-453. Morgan, M.J., and Madgwick, A.J. (1999). The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle. Biochemical and biophysical research communications 255, 245-250. Morgan, M.J., Madgwick, A.J., Charleston, B., Pell, J.M., and Loughna, P.T. (1995). The developmental regulation of a novel muscle LIM-protein. Biochemical and biophysical research communications 212, 840-846. Ng, E.K., Chan, K.K., Wong, C.H., Tsui, S.K., Ngai, S.M., Lee, S.M., Kotaka, M., Lee, C.Y., Waye, M.M., and Fung, K.P. (2002). Interaction of the heart-specific LIM domain protein, FHL2, with DNA-binding nuclear protein, hNP220. Journal of cellular biochemistry 84, 556-566. Ng, E.K., Lee, S.M., Li, H.Y., Ngai, S.M., Tsui, S.K., Waye, M.M., Lee, C.Y., and Fung, K.P. (2001). Characterization of tissue-specific LIM domain protein (FHL1C) which is an alternatively spliced isoform of a human LIM-only protein (FHL1). Journal of cellular biochemistry 82, 1-10. Pfaff, S.L., Mendelsohn, M., Stewart, C.L., Edlund, T., and Jessell, T.M. (1996). Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309-320. Quinzii, C.M., Vu, T.H., Min, K.C., Tanji, K., Barral, S., Grewal, R.P., Kattah, A., Camano, P., Otaegui, D., Kunimatsu, T., et al. (2008). X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. American journal of human genetics 82, 208-213. Radke, M.H., Peng, J., Wu, Y., McNabb, M., Nelson, O.L., Granzier, H., and Gotthardt, M. (2007). Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proceedings of the National Academy of Sciences of the United States of America 104, 3444-3449. Rafael, M.S., Laize, V., Bensimon-Brito, A., Leite, R.B., Schule, R., and Cancela, M.L. (2012). Four-and-a-half LIM domains protein 2 (FHL2) is associated with the development of craniofacial musculature in the teleost fish Sparus aurata. Cellular and molecular life sciences : CMLS 69, 423-434. Sadler, I., Crawford, A.W., Michelsen, J.W., and Beckerle, M.C. (1992). Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. The Journal of cell biology 119, 1573-1587. Sandri, M. (2008). Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23, 160-170. Schessl, J., Taratuto, A.L., Sewry, C., Battini, R., Chin, S.S., Maiti, B., Dubrovsky, A.L., Erro, M.G., Espada, G., Robertella, M., et al. (2009). Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1. Brain : a journal of neurology 132, 452-464. Shathasivam, T., Kislinger, T., and Gramolini, A.O. (2010). Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues. Journal of cellular and molecular medicine 14, 2702-2720. Shawlot, W., and Behringer, R.R. (1995). Requirement for Lim1 in head-organizer function. Nature 374, 425-430. Sheikh, F., Raskin, A., Chu, P.H., Lange, S., Domenighetti, A.A., Zheng, M., Liang, X., Zhang, T., Yajima, T., Gu, Y., et al. (2008). An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. The Journal of clinical investigation 118, 3870-3880. Sheng, H.Z., Moriyama, K., Yamashita, T., Li, H., Potter, S.S., Mahon, K.A., and Westphal, H. (1997). Multistep control of pituitary organogenesis. Science 278, 1809-1812. Splawski, I., Shen, J., Timothy, K.W., Lehmann, M.H., Priori, S., Robinson, J.L., Moss, A.J., Schwartz, P.J., Towbin, J.A., Vincent, G.M., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178-1185. Taniguchi, Y., Furukawa, T., Tun, T., Han, H., and Honjo, T. (1998). LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Molecular and cellular biology 18, 644-654. Turner, C.E., and Miller, J.T. (1994). Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. Journal of cell science 107 ( Pt 6), 1583-1591. Way, J.C., and Chalfie, M. (1988). mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5-16. Windpassinger, C., Schoser, B., Straub, V., Hochmeister, S., Noor, A., Lohberger, B., Farra, N., Petek, E., Schwarzbraun, T., Ofner, L., et al. (2008). An X-linked myopathy with postural muscle atrophy and generalized hypertrophy, termed XMPMA, is caused by mutations in FHL1. American journal of human genetics 82, 88-99. Yang, Z., Browning, C.F., Hallaq, H., Yermalitskaya, L., Esker, J., Hall, M.R., Link, A.J., Ham, A.J., McGrath, M.J., Mitchell, C.A., et al. (2008). Four and a half LIM protein 1: a partner for KCNA5 in human atrium. Cardiovascular research 78, 449-457. Zheng, Q., and Zhao, Y. (2007). The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biology of the cell / under the auspices of the European Cell Biology Organization 99, 489-502. Zhou, Q., Ruiz-Lozano, P., Martone, M.E., and Chen, J. (1999). Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. The Journal of biological chemistry 274, 19807-19813. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16319 | - |
| dc.description.abstract | Four-and-a-half LIM domains(FHL) 蛋白家族在真核生物中具有很高的保守性,其結構是由四又二分之一個LIM domain所組成。LIM domain為一蛋白質交互作用motif,因此FHL蛋白能夠和許多蛋白質進行作用,包括structural proteins、kinases以及許多transcription factors,因此參與、調控了許多細胞內的活動,包括細胞存活、轉錄調控及訊息傳遞。其組織特異性的表現模式主要在骨骼肌及心肌中,因此FHL蛋白家族在體內扮演的角色主要是調控肌肉及心血管的發育及功能。
本實驗中,我們首先比較了人類、老鼠及斑馬魚的FHL蛋白胺基酸序列,顯示了高度的保守性。接著,由斑馬魚的whole mount in situ hybridization實驗所得到的結果顯示,FHL蛋白在心臟及部分肌肉皆有表現,意味著其在心臟的重要性。為了探討FHL蛋白家族對於班馬魚胚胎時期的心臟發育及功能之影響,利用實驗室所選殖出的三種FHL基因,包括FHL1、FHL2、FHL5,藉由心臟專一性表現之啟動子cmlc2過量表現於斑馬魚胚胎心臟中,並同時表達綠色螢光蛋白以利於觀察。結果發現,FHL蛋白過量表現之基因轉殖魚部分螢光斑馬魚子代產生心律不整、心跳減緩的情形,顯示FHL蛋白參與了心肌節律,調控心跳。為了嘗試治療心律不整之病症並進一步釐清FHL蛋白家族是否透過和β-adrenergic receptor signaling pathway產生作用而調控心跳,將表現不同組合FHL 蛋白之斑馬魚品系以isoprenaline此一強心劑進行處理,將5~6dpf的魚苗浸泡、飼養在不同濃度(0.01μg/μl、0.0075μg/μl、0.005μg/μl、0.001μg/μl)的isoprenaline中,並持續觀察。我們的研究結果發現,經由isoprenaline處理將可以有效地改善過表現FHL 蛋白所造成的心律不整。然而,在長時間處理之下,過表現FHL 蛋白的斑馬魚品系心律不整的情形將會復發,並且有顯著的死亡率上升。我們仍需更進一步實驗來探討此現象。 藉由本實驗,我們更清楚地瞭解FHL蛋白在心臟中之作用,以及其在心臟疾病中的角色,而我們的成果也成功地以斑馬魚建立了心律不整的生物模式,有利於將來相關藥物的篩選及開發。 | zh_TW |
| dc.description.abstract | In eukaryotes, Four-and-a-half LIM domains (FHL) protein family is highly conserved. Structurally, the FHL proteins are composed of four closely connected LIM domains arranged in tandem, which are cysteine-rich double zinc finger motifs; and an N-terminal half LIM domain, which has one zinc finger motif. The LIM domain is known for mediating protein-protein interaction. Based on its protein-protein interaction properties, FHL protein family can interact with many proteins. Such like structural proteins, kinases and many transcription factors. The presence of multiple LIM domains, suggests that FHL protein family may involve in many cellular mechanisms. Including cellular survival, transcription regulation and signal transduction. The tissue-specific expression pattern of FHL protein family is mainly at cardiac muscular and skeletal muscle. Therefore the FHL protein family plays an important role in muscle and cardiovascular differentiation and the function maintenance.
In our study, by alignment of the FHL protein sequences in human, mouse and zebrafish and the results of whole mount in situ hybridization assay. Our results shows that FHL protein family are highly conserved and mainly expressed in heart and some part of skeletal muscle, suggest the importance of FHL protein family in the cardiomyocyte. We further analysed the role of FHL protein in the heart development by overexpressed several FHL proteins fused GFP including FHL1, FHL2 and FHL5, in zebrafish heart by a cardiac-specific promoter; cmlc2. The results turned out that a certain number of the FHL-GFP-positive offspring of transgenic line had arrhythmia. This indicates that FHL protein plays a role in regulation of heart rhythm. Next, we intend to rescue the phenotype of arrhythmia. Transgenic zebrafish which overexpressed different combination of FHL proteins, were treated with isoprenaline, a cardiac stimulant. Different FHL transgenic zebrafish embryos of 5-6dpf were immersed with different concentration of isoprenaline and heart beat were recorded daily. Our results demonstrated that isoprenaline could significantly rescue arrhythmia phenotype. However, long-term treatment had resulted in dramatic drop of survival rate and the recurring of irregular heart beat of FHL overexpressed transgenic line. Therefore further studies may be required to decipher the mechanism in the future. Taken together, our studies provide more understandings about the function of FHL protein in heart, the role in the cardiac disease, and established a zebrafish arrhythmia model for cardiovascular drug selection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:09:37Z (GMT). No. of bitstreams: 1 ntu-101-R99B46020-1.pdf: 2573153 bytes, checksum: 6f13063399a9e47eed27a249fac3ba6e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 章節目錄
誌謝 I 章節目錄 II 圖表目錄 IV 摘要 VI Abstract VIII 壹、序言 一、LIM domain and Four-and-a-half LIM (FHL) domains protein - 1 - I. FHL1 - 3 - II. FHL2 - 6 - III. FHL5 - 8 - 二、FHL 蛋白在人類肌肉疾病中之角色 - 9 - 三、以斑馬魚作為功能性基因體分析之實驗動物的優點 - 13 - 四、研究目的及策略 - 14 - 貳、實驗材料與方法 一、實驗材料 - 16 - 二、實驗方法 - 17 - I. FHL表現載體於斑馬魚胚胎之顯微注射 - 17 - II. 斑馬魚 FHL domains protein mRNA在早期胚胎發育之表現:RNA全胚胎原位雜交 (RNA whole-mount in situ hybridization) - 20 - III. 基因轉殖魚之Genotyping - 27 - IV. 基因轉殖魚之型態觀察、心律統計及照相、錄影 - 28 - V. β-adrenergic receptor agonist (isoprenalin)藥物處理 - 30 - 参、實驗結果 一、斑馬魚FHL蛋白家族基因序列分析 - 31 - 二、斑馬魚FHL蛋白家族基因在不同胚胎發育時期的表現位置 - 32 - 三、斑馬魚FHL 蛋白家族影響心臟之功能 - 35 - 四、利用FHL基因轉殖魚進行β2-adrenergic receptor agonist藥物測試 - 38 - 肆、討論 一、過量表現班馬魚FHL蛋白和心律不整之間的關係 - 41 - 二、FHL2過量表現之基因轉殖魚作為心律不整之藥物篩選模式生物 - 44 - 三、FHL5之功能預測 - 45 - 伍、參考文獻 - 47 - 六、備註 - 53 - 圖表目錄 圖1-1、FHL1蛋白在人類、老鼠和斑馬魚之胺基酸序列比對 - 55 - 圖1-2、FHL2蛋白在人類、老鼠和斑馬魚之胺基酸序列比對 - 56 - 圖1-3、FHL5蛋白在人類、老鼠和斑馬魚之胺基酸序列比對 - 57 - 圖2、原位雜合分析斑馬魚FHL1 mRNA在胚胎發育時期的分佈表現 - 58 - 圖3、原位雜合分析斑馬魚FHL2 mRNA在胚胎發育時期的分佈表現 - 59 - 圖4、原位雜合分析斑馬魚FHL5 mRNA在胚胎發育時期的分佈表現 - 60 - 圖5、心臟專一性啟動子cmlc2表現不同組合之FHL基因轉殖魚螢光樣式圖 - 61 - 圖6、Geno-typing分析各基因轉殖魚FHL基因是否嵌入斑馬魚染色體中,PCR電泳跑膠圖 - 62 - 圖7-1、原位雜合分析斑馬魚FHL蛋白在野生型斑馬魚與基因轉殖魚中之表現差異 - 63 - 圖7-2、原位雜合分析斑馬魚FHL蛋白在野生型斑馬魚與基因轉殖魚中之表現差異 - 64 - 圖8、心律不整與正常心律之影片截圖比較 - 66 - 圖9、各基因轉殖魚子代出現心律不整之比例分布 - 67 - 圖10、以Isoprenaline對過量表現不同組合FHL蛋白之基因轉殖魚進行藥物處理之心律不整比例觀察記錄圖 - 68 - 圖11、以Isoprenaline分別對過量表現FHL2及FHL5之基因轉殖魚進行藥物處理之心律不整比例觀察記錄圖 - 69 - 圖12、以Isoprenaline分別對過量表現FHL2及FHL5之基因轉殖魚進行藥物處理之存活率觀察記錄圖 - 70 - 表1、製備全覆性原位雜合之探針所用之引子序列 - 71 - 表2、以全覆性原位雜合法偵測FHL蛋白基因在不同胚胎發育時期之表現位置整理表 - 71 - 表3、表現不同FHL蛋白組合之基因轉殖魚列表(表現質體列表) - 72 - 表4、Geno-typing所使用之引子序列 - 72 - 表5、已知能與FHL1作用之蛋白質 - 75 - 表6、已知能與FHL2作用之蛋白質 - 79 - | |
| dc.language.iso | zh-TW | |
| dc.subject | isoprenaline | zh_TW |
| dc.subject | Four-and-a-half LIM domains(FHL) 蛋白家族 | zh_TW |
| dc.subject | LIM domain | zh_TW |
| dc.subject | cmlc2 | zh_TW |
| dc.subject | 心律不整 | zh_TW |
| dc.subject | arrhythmia | en |
| dc.subject | isoprenaline | en |
| dc.subject | Four-and-a-half LIM domains (FHL) protein | en |
| dc.subject | LIM domain | en |
| dc.subject | zinc finger motif | en |
| dc.subject | cmlc2 | en |
| dc.title | 螢光蛋白基因轉殖魚在心臟疾病之研究 | zh_TW |
| dc.title | Application of transgenic zebrafish expressing four-and-a-half LIM(FHL) domains proteins to the study of heart disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建璋(Chien-Chang Chen),廖永豐(Yung-Feng Liao) | |
| dc.subject.keyword | Four-and-a-half LIM domains(FHL) 蛋白家族,LIM domain,cmlc2,心律不整,isoprenaline, | zh_TW |
| dc.subject.keyword | Four-and-a-half LIM domains (FHL) protein,LIM domain,zinc finger motif,cmlc2,arrhythmia,isoprenaline, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
