請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16312
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳漢忠(Han-Chung Wu) | |
dc.contributor.author | Yi-Huei Kuo | en |
dc.contributor.author | 郭怡慧 | zh_TW |
dc.date.accessioned | 2021-06-07T18:09:18Z | - |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-12 | |
dc.identifier.citation | Aggarwal, S. (2011). What's fueling the biotech engine-2010 to 2011. Nat Biotechnol 29, 1083-1089.
Attarwala, H. (2010). Role of antibodies in cancer targeting. J Nat Sci Biol Med 1, 53-56. Beck, A., Wurch, T., Bailly, C., and Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10, 345-352. Blum, H.E. (2005). Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 11, 7391-7400. Bruix, J., Sala, M., and Llovet, J.M. (2004). Chemoembolization for hepatocellular carcinoma. Gastroenterology 127, S179-188. Canadas, I., Rojo, F., Arumi-Uria, M., Rovira, A., Albanell, J., and Arriola, E. (2010). C-MET as a new therapeutic target for the development of novel anticancer drugs. Clin Transl Oncol 12, 253-260. Carter, P. (2001). Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1, 118-129. Cheng, A.L., Kang, Y.K., Chen, Z., Tsao, C.J., Qin, S., Kim, J.S., Luo, R., Feng, J., Ye, S., Yang, T.S., et al. (2009). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10, 25-34. Ciavarella, S., Milano, A., Dammacco, F., and Silvestris, F. (2010). Targeted therapies in cancer. BioDrugs 24, 77-88. Ditzel, H.J., Masaki, Y., Nielsen, H., Farnaes, L., and Burton, D.R. (2000). Cloning and expression of a novel human antibody-antigen pair associated with Felty's syndrome. Proc Natl Acad Sci U S A 97, 9234-9239. El-Serag, H.B. (2011). Hepatocellular carcinoma. N Engl J Med 365, 1118-1127. El-Serag, H.B., Marrero, J.A., Rudolph, L., and Reddy, K.R. (2008). Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 134, 1752-1763. Farazi, P.A., and DePinho, R.A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687. Finn, R.S. (2010). Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now? Clin Cancer Res 16, 390-397. Fogh, J., Fogh, J.M., and Orfeo, T. (1977). One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59, 221-226. Glasgow, J.E., Bagdasarian, A., and Colman, R.W. (1982). Functional alpha 1 protease inhibitor produced by a human hepatoma cell line. J Lab Clin Med 99, 108-117. Hansen, M.H., Nielsen, H., and Ditzel, H.J. (2001). The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc Natl Acad Sci U S A 98, 12659-12664. Heffelfinger, S.C., Hawkins, H.H., Barrish, J., Taylor, L., and Darlington, G.J. (1992). SK HEP-1: a human cell line of endothelial origin. In Vitro Cell Dev Biol 28A, 136-142. Herbst, R.S., Johnson, D.H., Mininberg, E., Carbone, D.P., Henderson, T., Kim, E.S., Blumenschein, G., Jr., Lee, J.J., Liu, D.D., Truong, M.T., et al. (2005). Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 23, 2544-2555. Hodi, F.S., O'Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363, 711-723. Hoshida, Y., Villanueva, A., and Llovet, J.M. (2009). Molecular profiling to predict hepatocellular carcinoma outcome. Expert Rev Gastroenterol Hepatol 3, 101-103. Hsu, C.H., Yang, T.S., Hsu, C., Toh, H.C., Epstein, R.J., Hsiao, L.T., Chen, P.J., Lin, Z.Z., Chao, T.Y., and Cheng, A.L. (2010). Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br J Cancer 102, 981-986. http://www.doh.gov.tw (2012) (Department of Health, Executive Yuan, TAIWAN). Hudis, C.A. (2007). Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 357, 39-51. Huynh, H. (2010). Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol 80, 550-560. Ishida, I., Tomizuka, K., Yoshida, H., Tahara, T., Takahashi, N., Ohguma, A., Tanaka, S., Umehashi, M., Maeda, H., Nozaki, C., et al. (2002). Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4, 91-102. Jakobovits, A. (1995). Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 6, 561-566. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J Clin 61, 69-90. Jungbluth, A.A., Stockert, E., Huang, H.J., Collins, V.P., Coplan, K., Iversen, K., Kolb, D., Johns, T.J., Scott, A.M., Gullick, W.J., et al. (2003). A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci U S A 100, 639-644. Koefoed, K., and Ditzel, H.J. (2004). Identification of talin head domain as an immunodominant epitope of the antiplatelet antibody response in patients with HIV-1-associated thrombocytopenia. Blood 104, 4054-4062. Lee, J.S., Heo, J., Libbrecht, L., Chu, I.S., Kaposi-Novak, P., Calvisi, D.F., Mikaelyan, A., Roberts, L.R., Demetris, A.J., Sun, Z., et al. (2006). A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12, 410-416. Lencioni, R. (2010). Loco-regional treatment of hepatocellular carcinoma. Hepatology 52, 762-773. Llovet, J.M., Fuster, J., and Bruix, J. (1999). Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology 30, 1434-1440. Llovet, J.M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.F., de Oliveira, A.C., Santoro, A., Raoul, J.L., Forner, A., et al. (2008). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378-390. Lonberg, N. (2008). Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol, 69-97. Lu, R.M., Chang, Y.L., Chen, M.S., and Wu, H.C. (2011). Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32, 3265-3274. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222, 581-597. Mazzaferro, V., Regalia, E., Doci, R., Andreola, S., Pulvirenti, A., Bozzetti, F., Montalto, F., Ammatuna, M., Morabito, A., and Gennari, L. (1996). Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334, 693-699. Pelletier, S.J., Fu, S., Thyagarajan, V., Romero-Marrero, C., Batheja, M.J., Punch, J.D., Magee, J.C., Lok, A.S., Fontana, R.J., and Marrero, J.A. (2009). An intention-to-treat analysis of liver transplantation for hepatocellular carcinoma using organ procurement transplant network data. Liver Transpl 15, 859-868. Philip, P.A., Mahoney, M.R., Allmer, C., Thomas, J., Pitot, H.C., Kim, G., Donehower, R.C., Fitch, T., Picus, J., and Erlichman, C. (2005). Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 23, 6657-6663. Philip, P.A., Mahoney, M.R., Holen, K.D., Northfelt, D.W., Pitot, H.C., Picus, J., Flynn, P.J., and Erlichman, C. (2012). Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer 118, 2424-2430. Pinter, M., Hucke, F., Graziadei, I., Vogel, W., Maieron, A., Konigsberg, R., Stauber, R., Grunberger, B., Muller, C., Kolblinger, C., et al. (2012). Advanced-stage hepatocellular carcinoma: transarterial chemoembolization versus sorafenib. Radiology 263, 590-599. Ramaswamy, B., Elias, A.D., Kelbick, N.T., Dodley, A., Morrow, M., Hauger, M., Allen, J., Rhoades, C., Kendra, K., Chen, H.X., et al. (2006). Phase II trial of bevacizumab in combination with weekly docetaxel in metastatic breast cancer patients. Clin Cancer Res 12, 3124-3129. Ramaswamy, B., and Shapiro, C.L. (2003). Phase II trial of bevacizumab in combination with docetaxel in women with advanced breast cancer. Clin Breast Cancer 4, 292-294. Raoul, J., Finn, R., Kang, Y., Park, J., Harris, R., Coric, V., Donica, M., and Walters, I. (2009). An open-label phase II study of first-and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol 27, A4577. Reichert, J.M. (2012). Marketed therapeutic antibodies compendium. MAbs 4, 413-415. Reichert, J.M., and Valge-Archer, V.E. (2007). Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6, 349-356. Sanoff, H.K., Bernard, S., Goldberg, R.M., Morse, M.A., Garcia, R., Woods, L., Moore, D.T., and O'Neil, B.H. (2011). Phase II Study of Capecitabine, Oxaliplatin, and Cetuximab for Advanced Hepatocellular Carcinoma. Gastrointest Cancer Res 4, 78-83. Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R., Hemingsen, G., Wong, C., Gerhart, J.C., and Marks, J.D. (1998). Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95, 6157-6162. Siegel, A.B., Cohen, E.I., Ocean, A., Lehrer, D., Goldenberg, A., Knox, J.J., Chen, H., Clark-Garvey, S., Weinberg, A., Mandeli, J., et al. (2008). Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 26, 2992-2998. Smith, G.P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317. Spratlin, J.L., Cohen, R.B., Eadens, M., Gore, L., Camidge, D.R., Diab, S., Leong, S., O'Bryant, C., Chow, L.Q., Serkova, N.J., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 28, 780-787. Tanaka, S., and Arii, S. (2010). Current status of molecularly targeted therapy for hepatocellular carcinoma: basic science. Int J Clin Oncol 15, 235-241. Thomas, M.B., Chadha, R., Glover, K., Wang, X., Morris, J., Brown, T., Rashid, A., Dancey, J., and Abbruzzese, J.L. (2007). Phase 2 study of erlotinib in patients with unresectable hepatocellular carcinoma. Cancer 110, 1059-1067. Thomas, M.B., Morris, J.S., Chadha, R., Iwasaki, M., Kaur, H., Lin, E., Kaseb, A., Glover, K., Davila, M., and Abbruzzese, J. (2009). Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 27, 843-850. Turner, B.M., and Turner, V.S. (1980). Secretion of alpha 1-antitrypsin by an established human hepatoma cell line and by human/mouse hybrids. Somatic Cell Genet 6, 1-14. Van Cutsem, E., Kohne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.R., Makhson, A., D'Haens, G., Pinter, T., Lim, R., Bodoky, G., et al. (2009). Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360, 1408-1417. Weiner, G.J. (2010). Rituximab: mechanism of action. Semin Hematol 47, 115-123. Welt, S., Divgi, C.R., Scott, A.M., Garin-Chesa, P., Finn, R.D., Graham, M., Carswell, E.A., Cohen, A., Larson, S.M., Old, L.J., et al. (1994). Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 12, 1193-1203. Wu, H.C., and Chang, D.K. (2010). Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. J Oncol 2010, 723798. Yau, T., Chan, P., Epstein, R., and Poon, R.T. (2009). Management of advanced hepatocellular carcinoma in the era of targeted therapy. Liver Int 29, 10-17. Zender, L., Spector, M.S., Xue, W., Flemming, P., Cordon-Cardo, C., Silke, J., Fan, S.T., Luk, J.M., Wigler, M., Hannon, G.J., et al. (2006). Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253-1267. Zhu, A., Finn, R., Mulcahy, M., Gurtler, J., Sun, W., Schwartz, J., Rojas, P., Dontabhaktuni, A., Youssoufian, H., and Stuart, K. (2010). A phase II study of ramucirumab as first-line monotherapy in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 28, 4083. Zhu, A.X., Blaszkowsky, L.S., Ryan, D.P., Clark, J.W., Muzikansky, A., Horgan, K., Sheehan, S., Hale, K.E., Enzinger, P.C., Bhargava, P., et al. (2006). Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24, 1898-1903. Zhu, A.X., Stuart, K., Blaszkowsky, L.S., Muzikansky, A., Reitberg, D.P., Clark, J.W., Enzinger, P.C., Bhargava, P., Meyerhardt, J.A., Horgan, K., et al. (2007). Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer 110, 581-589. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16312 | - |
dc.description.abstract | 肝癌是全世界最常見的癌症之一,且肝癌在亞太地區有極高的盛行率。肝癌可以經由手術切除、化療、放射線治療、免疫療法或治療性抗體等方式治療。以手術切除的方式,常因癌細胞入侵到鄰近組織而效果有限;化療及放射線療法因會對正常組織造成傷害而產生副作用;標靶治療不但能提高腫瘤治療的專一性,也能降低藥物的副作用。因此,標靶治療及免疫療法為當前治療肝癌的發展趨勢。利用活體的噬菌體顯現法 (phage display) 技術可以篩選出與腫瘤組織專一性結合的人類單鏈抗體 (scFv) 以達到標的治療的目的。在本研究中,我們透過噬菌體顯現法 (phage display) 篩選出可以專一性地與肝癌細胞株結合的人類單鏈抗體,並成功獲得數個對SK-HEP-1細胞具有高度親和力的噬菌體株,經酵素免疫連結吸附反應及流式細胞儀的分析,發現其具有辨識大部分肝癌細胞株的能力,而不與正常組織結合。除此之外,藉由免疫組織染色也證實表現人類單鏈抗體的噬菌體能與肝癌病人檢體的腫瘤組織相結合,而正常組織則否。為了進一步了解這些對抗肝癌細胞的人類單鏈抗體,在活體內是否仍具有腫瘤的標的能力,故將噬菌體施打於移植人類腫瘤的免疫不全鼠,發現其在腫瘤組織相對於正常器官有較高量噬菌體的聚集。之後,再進一步建構表現人類全長IgG抗體的質體,於CHO-K1及FreeStyleTM 293-F細胞株進行生產,再以西方墨點法、酵素免疫連結吸附反應、免疫螢光染色法以及流式細胞分析等技術確認表現出的人類全長IgG抗體是否仍保有專一性結合至肝癌細胞株的能力。綜合以上之結果,我們所篩選出的人類抗體在未來應用於診斷及治療肝癌病人方面應有極大的潛力。 | zh_TW |
dc.description.abstract | Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. Treatment of HCC through surgery is unsatisfactory, while systemic chemotherapy and radiotherapy are less efficacious. Targeted therapy and immunotherapy might become better alternatives for the treatment of HCC. Phage display technology is a powerful tool for selecting the specific monoclonal antibodies for development of targeted therapeutics. In this study, we utilized phage-displayed human single chain variable fragment (scFv) library to identify phage clones that specifically bind to HCC cells. After five rounds of in vitro biopanning, several phage clones with high binding affinity to SK-HEP-1 cells were identified. The phage clones were able to bind to HCC cell lines but not normal cells, as shown by ELISA and flow cytometry analysis. In addition, immunohistochemical staining also confirmed the binding of the selected phage clones to the tumor cells in surgical specimens of HCC, but not to their normal counterparts. The in vivo tumor homing assay was further confirmed the targeting ability of selected phage clones in xenograft model. Furthermore, the scFv genes of selected phage clones were successfully constructed and produced as recombinant fully human IgG in CHO-K1 cells or FreeStyleTM 293-F cells. Binding characteristics of recombinant IgGs from the respective phage clones were similar to original phage-displayed scFv clones. We conclude that recombinant fully human IgGs screening from phage display library have strong clinical potential as therapeutic antibodies for the treatment of HCC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:09:18Z (GMT). No. of bitstreams: 1 ntu-101-R99450004-1.pdf: 6296132 bytes, checksum: 35019e82319544ffe06ecfa9233f5a3a (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書 --------------------------------------------------------------------------------- i
致謝 --------------------------------------------------------------------------------------------------- ii 中文摘要 -------------------------------------------------------------------------------------------- iv Abstract ---------------------------------------------------------------------------------------------- v 1. Introduction----------------------------------------------------------------------------------- 1 1.1 Epidemiology of hepatocellular carcinoma------------------------------------------- 1 1.2 The therapy of hepatocellular carcinoma --------------------------------------------- 1 1.3 Characteristics of SK-HEP-1 cell lines ----------------------------------------------- 3 1.4 Targeted therapies in hepatocellular carcinoma -------------------------------------- 4 1.5 Monoclonal antibody therapy of cancer ---------------------------------------------- 6 1.6 Mechanisms of monoclonal antibodies for cancer therapy ------------------------- 7 1.7 Structure and function of antibodies --------------------------------------------------- 9 1.8 Phage display ----------------------------------------------------------------------------- 9 2. Materials and Methods ------------------------------------------------------------------- 12 2.1 Cell lines and cell culture ------------------------------------------------------------- 12 2.2 Phage-displayed human naive scFv library and biopanning procedures ------- 13 2.3 ELISA screening of selected phage clones ----------------------------------------- 14 2.4 Identification of phage DNA sequences -------------------------------------------- 15 2.5 Flow cytometry analysis -------------------------------------------------------------- 15 2.6 Construction of selected scFv phage clones to human IgG ---------------------- 16 2.7 Expression of intact human IgG in transfected CHO-K1 cells ------------------ 16 2.8 Characterization of full-length human IgG by Western blot analysis ----------- 17 2.9 Immunofluorescent localization of targeted proteins by human IgG against SK-HEP-1 cells ------------------------------------------------------------------------- 18 2.10 Internalization study ------------------------------------------------------------------- 19 2.11 Immunohistochemical localization of phages in surgical specimens ----------- 19 2.12 In vivo homing experiment and tissue distribution of phages ------------------- 20 3. Results ---------------------------------------------------------------------------------------- 22 3.1 Selection of phage-displayed scFvs targeting hepatocellular carcinoma ------- 22 3.2 Identification of phage clones specifically binding to SK-HEP-1 using ELISA -------------------------------------------------------------------------------------------- 22 3.3 Identification of the VH and VL domains of positive scFv phage clones ------- 23 3.4 Determination of the binding affinity of selected scFv phage clone by ELISA -------------------------------------------------------------------------------------------- 23 3.5 Determination of binding specificity of the selected phage clones by FACS analysis----------------------------------------------------------------------------------- 24 3.6 Characterization of the binding patterns of selected phage clones to various human cancer cell lines. --------------------------------------------------------------- 25 3.7 Construction of the fully human IgG derived from scFv phages ---------------- 26 3.8 Transient expression of fully human IgG in transfected CHO-K1 cells -------- 26 3.9 Confirmation of the binding affinity and specificity of the expressed fully human IgG ------------------------------------------------------------------------------- 27 3.10 Validation of the binding to kinds of hepatocellular carcinoma cells of expressed fully human IgG ----------------------------------------------------------- 28 3.11 Immunolocalization of the selected phage clones and expressed IgG on SK-HEP-1 cells ------------------------------------------------------------------------- 29 3.12 Internalization studies of the selected phages and expressed IgG in SK-HEP-1 cells --------------------------------------------------------------------------------------- 29 3.13 Immunohistochemical staining of the selected phages in hepatocellular carcinoma surgical specimens -------------------------------------------------------- 30 3.14 In vivo tumor homing ability of the selected scFv phage clones ---------------- 31 3.15 Large-scale transient expression of functional full-length human IgG in suspension-grown FreeStyle™ 293-F cells ----------------------------------------- 32 4. Discussion ----------------------------------------------------------------------------------- 34 5. References ----------------------------------------------------------------------------------- 40 6. Tables ----------------------------------------------------------------------------------------- 47 7. Figures --------------------------------------------------------------------------------------- 51 | |
dc.language.iso | en | |
dc.title | 研發應用於肝癌治療之人類抗體 | zh_TW |
dc.title | Development of Human Antibodies for Therapy of Liver Caner | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林國儀(Kuo-I Lin),蕭培文(Pei-Wen Hsiao) | |
dc.subject.keyword | 噬菌體顯現法,人類單鏈抗體,肝癌,治療性抗體,標靶治療, | zh_TW |
dc.subject.keyword | hepatocellular carcinoma (HCC),phage display,single chain variable fragment (scFv),therapeutic antibody,targeted therapy, | en |
dc.relation.page | 77 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-12 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。