Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16310Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李嗣涔(Si-Chen Lee) | |
| dc.contributor.author | Chun-Han Chen | en |
| dc.contributor.author | 陳俊翰 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:09:13Z | - |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | [1] Mie, G., Ann.Physik,25, 377(1908)
[2] Economou, E. N. ,Phys. Rev. 182, 539–554 (1969). [3] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998). [4] W. C. Kuo, C. Chou, and H. T. Wu, Opt. Lett. 28, 1329-1331 (2003) [5] Hayes, C. L. & Van Duyne, R. P. , J. Phys. Chem. B 107, 7426–7433 (2003). [6] Liao, H., Nehl, C. L. & Hafner, J. H., Nanomedicine 1, 201–208 (2006). [7] Haes, A. & Van Duyne, R. P., Anal. Bioanal. Chem. 379, 920–930 (2004). [8] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet and T. W. Ebbesen, Nature 440, 508-511 (2006) [9] J. K. Mapel, M. Singh, M. A. Baldo, and K Celebi, Appl. Phys. Lett. 90, 121102 (2007). [10] Kristofer Tvingstedt, Nils-Krister Persson, Olle Inganas, Aliaksandr Rahachou, and Igor V. Zozoulenko, Appl. Phys. Lett. 91, 113514 (2007). [11] C. Y. Chang, H. Y. Chang, C. Y. Chen, M. W. Tsai, Y. T. Chang, and S. C. Lee, Appl. Phys. Lett. 91, 163107 (2007). [12] Bozhevolnyi, S. I. in Nanophotonics with Surface Plasmons (eds Shalaev, V. M. & Kawata, S.) 1–34 (Elsevier, 2007).69 [13] Sincerbox, G. T. & Gordon II, J. C., Appl. Opt. 20, 1491–1494 (1981). [14] Solgaard, O., Ho., F., Tackara, J. I. & Bloom, D. M., Appl. Phys. Lett. 61, 2500–2502 (1992). [15] Dicken, M. J. et al., Nano Lett. 8, 4048–4052 (2008). [16] Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: A metal-oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009). [17] MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I., Nature Photon. 3, 55–58 (2009). [18] Pacifci, D., Lezec, H. J. & Atwater, H. A., Nature Photon. 1, 402–406 (2007). [19] Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L., Nano Lett. 8, 1506–1510 (2008). [20] M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang and S. C. Lee, Appl. Phys.Lett 89, 173116. (2006) [21] T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, Appl. Phys. Lett., 89,173128 (2006) [22] C. Y. Chen, M. W. Tsai, Y. W. Jiang, Y. H. Ye, Y. T. Chang and S. C. Lee, Appl.Phys. Lett. 91, 243111 (2007) [23] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957). [24] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988). [25] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000). [26] J. Gomez Rivas, Nature Photonics 2, 137 (2008). [27] J. Saxler, J. Gomez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, Phys. Rev. B 69, 155427 (2004). [28] T.-I. Jeon and D. Gris, J. Gomez Rivas, chkowsky, Appl. Phys. Lett. 88, 061113 (2006). [29] Xiangang Luo and Teruya Ishihara, Appl. Phys. Lett. 84, 4780 (2004). [30] J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, Phys. Rev. B 68, 201306(R) (2003). [31] H. Cao and A. Nahata, Opt. Express 12, 1004 (2004) [32] D. Qu, D. Grischkowsky, and W. Zhang, Opt. Lett. 29, 896 (2004). [33] F. J. G. de Abajo, R. Gomez-Medina, and J. J. Saenz, Phys. Rev. E 72, 016608 (2005). [34] B. Hou, W. Wen, C. T. Chan, and P. Sheng, Appl. Phys. Lett. 89, 131917 (2006). [35] M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, Opt. Lett. 29, 2500 (2004). [36] F. Miyamaru, M. Tanaka, and M. Hangyo, Phys. Rev. B 74, 153416 (2006). [37] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Science 305, 847 (2004). [38] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun., 200, 1 (2001). [39] T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, Appl. Phys. Lett. 89, 033120 (2006). [40] A. P. Hibbins, B. R. Evans, and J. R. Sambles, Science 308, 670 (2005). [41] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L.Martin-Moreno, and F. J. Garcia-Vidal, Nature Photonics 2, 175 (2008). [42] Bakhirkin, Y.A.; Kosterev, A.A.; Roller, C.; Curl, R.F., Appl. Opt. 2004, 43, 2257–2266. [43] Dahnke, H.; Kleine, D.; Urban, C.; Hering, P., Appl. Phys. B: Lasers Opt. 2001, 72, 121–125. [44] Sigrist, M.W.; Bartlome, R.; Marinov, D.; Rey, J.M.; Vogler, D.E.; Wachter, H. Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B: Lasers Opt. 2008, 90, 289–300. [45] Halmer, D.; von Basum, G.; Hering, P.; Murtz, M. , Opt. Lett. 2005, 30, 2314–2316. [46] Parameswaran KR, Rosen DI, Allen MG,Ganz AM, Risby TH. Appl. Opt. 48(4), B73–B79 (2009). [47] Dahnke, H.; Kleine, D.; Hering, P., Appl. Phys. B: Lasers Opt. 2001, 72, 971–975. [48] Moskalenko, K.L.; Nadezhdinskii, A.I.; Adamovskaya, I.A. Infrared Phys. Tech. 1996, 37, 181-192. [49] A. R. Wilkes and W. W. Mapleson, Br. J. Anaesth., vol. 76, pp. 737–739, May 1996. [50] E. A. Boettner and F. C. Dallos,”Am. Ind. Hyg. Assoc. J., vol. 26, pp. 289–293, 1965. [51] Jan E. Szulejko, Michael McCulloch, Jennifer Jackson, Dwight L. McKee, Jim C. Walker, and Touradj Solouki, IEEE SENSORS JOURNAL, VOL. 10, NO. 1,JANUARY 2010 [52] Irina T. Sorokina and Konstantin L. Vodopyanov, Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), Springer; 1 edition (2003) [53] Bujin Guo, Yi Wang, Yang Wang, Han Q. Le, Journal of Biomedical Optics 12, p. 024005 (2007) [54] Ivan Celanovic, David Perreault, and John Kassakian, Physical Review B 72, 075127 (2005) [55] B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006) [56] David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos, Physical Review E74, 016609 (2006) [57] David L. C. Chan, Marin Soljaˇci’c and J. D. Joannopoulos, Opt. Express 14,8785-8796 (2006) [58] David L. C. Chan, Ivan Celanovic, J. D. Joannopoulos, and Marin Soljačić,Physical Review A 74, 064901 (2006) [59] David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos, Physical Review E74, 036615 (2006) [60] B. J. Lee, Y.-B. Chen, and Z. M. Zhang, Optics Letters 33, 204-206 (2008) [61] Y. H. Ye and J. Y. Zhang, Optics Letters 30, 1521-1523 (2005) [62] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, Physical Review B 78, 153111 (2008), Jean-Jacques Greffet, Surface Science Reports 57, 59-112 (2005) [63] Karl Joulain, Jean-Philippe Mulet, Francois Marquier, Re’mi Carminati, Jean-Jacques Greffet, Surface Science Reports 57, 59-112 (2005) [64] Y. T. Wu, Y. T. Chang, Y. W. Jiang, P. E. Chang, Y. H. Ye, D. C. Tzuang, H. H. Chen, H. F. Huang, and S. C. Lee, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 20, OCTOBER 15, 2010 [65] http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12336&class_no=440&level_no=4 民國100年主要死因分析 行政院衛生署 [66] Stefan A. Maier, Plasmonics: Fundamentals and Applications, Springer (2007) [67] S. Collin, F. Pardo, and J.-l. Pelouard, Opt express 15, 4310 (2007)66 [68] Handbook of Instrumental Techniques for Analytical Chemistry, Ch. 15, edited by C. P. Sherman Hsu. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16310 | - |
| dc.description.abstract | 本文針對二氧化碳氣體於紅外線波段吸收與增加波導型紅外線熱輻射發射器發射效率之研究。經由量測得知二氧化碳氣體之紅外線吸收波長位於2.7微與4.26微米,並精準的定義波導型紅外線熱輻射發射器與氧化層厚度的關係,製造出針對二氧化碳吸收波長於4.26微米的紅外線光源。並且發現加熱電極之圖形顯著地影響波導型紅外線熱輻射發射器發射效率,透過蜿蜒的圖形使電流與熱流集中於圖形轉角處使之產生更多熱源進而造成熱源的溫度更均勻。並藉由提高加熱電極的長寬比與加熱面積,有效的提升熱電轉換效率。根據經由量測獲得二氧化碳氣體位於4.26微米之吸收係數介於0.32~0.33 cm-1之間,進而架設非分光紅外線氣體偵測系統以獲取二氧化碳濃度之資訊。 | zh_TW |
| dc.description.abstract | This thesis focuses on the absorption of CO2 in infrared region and improving the emission efficiency of waveguide thermal emitter. The absorption wavelengths of CO2 at 2.7 μm and 4.26 μm have been discovered. And relation between the emission wavelength of WTE and thickness of oxide layer is precisely defined. The emission efficiency of infrared thermal is affected significantly by geometry of electrode. The winding current path will cause current and the heat flux accumulates at the corner of the pattern to generate more heat source and result in more uniform temperature in the heat source. And the higher L/W ratio causes the higher conversion efficiency, and larger area will cause more heat source. Base on the absorption coefficient of CO2 in 4.26 μm measured to be about 0.32~0.33 cm-1, a NDIR system to measure the concentration of CO2 is built. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:09:13Z (GMT). No. of bitstreams: 1 ntu-101-R99943053-1.pdf: 3578005 bytes, checksum: 14800fcea8c036547f2b4b3566024157 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III Contents IV Figure Captions VI List of Tables IX Chapter 1 Introduction 1 1.1 Plasmonics and Infrared thermal emitters 1 1.2 Infrared thermal emitters 2 1.3 The motivations of the research 3 1.4 Frameworks of this thesis 6 Chapter 2 The Fundamental Theorem 7 2.1 The fundamentals of surface plasmon 7 2.1.1 Surface plasmon at interface between the dielectric and the metal 7 2.1.2 Surface plasmon polaritons at structure of metal/dielectric/metal 11 2.2 Fabrication of waveguide thermal emitter 15 2.2.1 Process flow 15 2.2.2 Photolithography 15 2.2.3 Lift-off process 16 2.3 Measurement systems 18 2.3.1 Introduction of FTIR 18 2.3.2 Reflection measurement 20 2.3.3 Thermal emission measurement 22 2.3.4 Pyroelectric sensor 24 Chapter 3 Improvement of Emission Efficiency of Infrared Thermal Emitter 27 3.1 The absorption spectrum of CO2 27 3.1.1 Experimental design of gas chamber 27 3.1.2 Measurement of infrared absorption spectrum of CO2 30 3.2 The radiation wavelength from waveguide thermal emitter 33 3.2.1 Basic theorem 33 3.2.2 The emission peak wavelength of WTE 34 3.3 The Emission Efficiency of Infrared Thermal Emitter 37 3.3.1 The influence of electrode pattern 37 3.3.2 Simulation of current and heat distribution in electrode 39 3.3.3 Experiments 44 3.3.4 Results and discussion 45 Chapter 4 CO2 Sensing system 53 4.1 The absorption of 4.26μm infrared light by CO2 with different concentration 53 4.2 Design of a non-dispersive infrared (NDIR) CO2 Sensing system and Experimental setup 58 4.3 The delta voltage varies concentration test 65 4.4 Discussion 66 Chapter 5 Summary 68 Reference 70 | |
| dc.language.iso | en | |
| dc.subject | 波導 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 輻射 | zh_TW |
| dc.subject | 紅外線 | zh_TW |
| dc.subject | 效率 | zh_TW |
| dc.subject | wave-guide | en |
| dc.subject | CO2 | en |
| dc.subject | radiation | en |
| dc.subject | infrared | en |
| dc.subject | efficiency | en |
| dc.title | 提升波導型熱輻射紅外線發射器發光效率並應用於二氧化碳氣體偵測 | zh_TW |
| dc.title | Improving the Emission Efficiency of Waveguide Infrared Thermal Emitter and Its Application to CO2 Gas Sensing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄(Hao-Hsiung Lin),張宏鈞(Hung-Chun Chang),林世明(Shi-Ming Lin) | |
| dc.subject.keyword | 二氧化碳,輻射,紅外線,效率,波導, | zh_TW |
| dc.subject.keyword | CO2,radiation,infrared,efficiency,wave-guide, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 3.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
