請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16302
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖先順(Hsien-Shun Liao) | |
dc.contributor.author | Ping-Te Lin | en |
dc.contributor.author | 林秉德 | zh_TW |
dc.date.accessioned | 2021-06-07T18:08:54Z | - |
dc.date.copyright | 2020-08-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-30 | |
dc.identifier.citation | [1] S. M. Salapaka and M. V. Salapaka, 'Scanning probe microscopy,' IEEE Control Systems Magazine, vol. 28, no. 2, pp. 65-83, 2008. [2] G. Binnig and H. Rohrer, 'Scanning tunneling microscopy,' Surface science, vol. 126, no. 1-3, pp. 236-244, 1983. [3] G. Binnig, C. F. Quate, and C. Gerber, 'Atomic force microscope,' Physical review letters, vol. 56, no. 9, p. 930, 1986. [4] F. Meli and R. Thalmann, 'Long-range AFM profiler used for accurate pitch measurements,' Measurement Science and Technology, vol. 9, no. 7, p. 1087, 1998. [5] A. Sinno et al., 'Enlarged atomic force microscopy scanning scope: Novel sample-holder device with millimeter range,' Review of Scientific Instruments, vol. 78, no. 9, p. 095107, 2007. [6] 陳正偉, '大量測範圍力量量測系統之設計與開發,' 臺灣大學機械工程學研究所學位論文, pp. 1-69, 2019. [7] 黃英碩, '掃描探針顯微術的原理及應用,' 科儀新知, no. 144, pp. 7-17, 2005. [8] H. H. Fang, K.-Y. Chan, and L.-C. Xu, 'Quantification of bacterial adhesion forces using atomic force microscopy (AFM),' Journal of microbiological methods, vol. 40, no. 1, pp. 89-97, 2000. [9] B. Voigtländer, Scanning probe microscopy: Atomic force microscopy and scanning tunneling microscopy. Springer, 2015. [10] Q. Zhong, D. Inniss, K. Kjoller, and V. Elings, 'Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy,' Surface Science Letters, vol. 290, no. 1-2, pp. L688-L692, 1993. [11] P. Markiewicz and M. C. Goh, 'Identifying locations on a substrate for the repeated positioning of AFM samples,' Ultramicroscopy, vol. 68, no. 4, pp. 215-221, 1997. [12] M. Sitti and H. Hashimoto, 'Two-dimensional fine particle positioning under an optical microscope using a piezoresistive cantilever as a manipulator,' journal of Micromechatronics, vol. 1, no. 1, pp. 25-48, 2000. [13] W. Kuo, S. Chuang, C. Nian, and Y. Tarng, 'Precision nano-alignment system using machine vision with motion controlled by piezoelectric motor,' Mechatronics, vol. 18, no. 1, pp. 21-34, 2008. [14] L. Ren, L. Wang, J. K. Mills, and D. Sun, 'Vision-based 2-D automatic micrograsping using coarse-to-fine grasping strategy,' IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3324-3331, 2008. [15] A. Colom, I. Casuso, F. Rico, and S. Scheuring, 'A hybrid high-speed atomic force–optical microscope for visualizing single membrane proteins on eukaryotic cells,' Nature communications, vol. 4, no. 1, pp. 1-8, 2013. [16] NationalInstrument, 'NI Vision 2015 Concepts Help,' 2015. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16302 | - |
dc.description.abstract | 原子力顯微鏡(Atomic Force Microscope, AFM)是透過偵測微小探針與樣品間的交互力作用,取得奈米級解析度成像的顯微技術。然而,一般商用原子力顯微鏡之掃描範圍在100 µm以內,無法適用於許多工業量測需求。因此,近年來許多研究團隊致力於開發大尺度掃描面積的原子力顯微鏡系統。本論文致力於改善由國立臺灣大學奈米儀器實驗室所開發的大量測範圍力量量測系統之限制。第一,此系統需要使用者以肉眼觀察的方式將雷射光點聚焦於微懸臂探針前端,除了缺乏操作效率外,不良的雷射聚焦位置可能嚴重降低微懸臂偏折量測靈敏度。第二,樣品缺乏影像座標系統,導致無法確認量測之位置與準確度。本篇論文開發一影像定位系統,結合力量量測系統,透過光學影像協助進行雷射聚焦位置調整。同時設計出簡易的操作介面供使用者進行影像定位量測模式,系統可擷取影像資料,並經由LabVIEW運算控制馬達定位量測樣品。實驗結果顯示,影像定位系統在不影響雷射光路的前提下,最佳影像解析度可達15.6233 µm/pixel,並且測試力量量測系統之馬達移動誤差可控制在±10 µm誤差範圍內。 | zh_TW |
dc.description.abstract | Atomic force microscope (AFM) is a microscopy technology that can generate images at nanoscale resolution by detecting the tip-sample interaction forces. However, the scan range of common AFMs is usually less than an area of 100 µm × 100 µm, which is not sufficient for many industrial measurements. Therefore, several research teams have developed large scanning-area AFM systems. This thesis is devoted to improving a force measurement system with a large measuring range developed by the Nano Instrumentation Laboratory at National Taiwan University. First, this system requires users to align the focal laser on the front end of the cantilever by visual observation. This procedure is inefficient, and an inappropriate focusing position of the laser spot may reduce the sensitivity of the cantilever detection system. Second, the relative position between the sample feature and the measuring point is not available due to the lack of an image coordinate system. In this thesis, a vision-based positioning system was developed to combine with the force measurement system, which can provide an optical image to assist the user for the laser alignment. Moreover, a vision-based positioning interface was developed using LabVIEW software, which allows the user to determine the measuring position on the optical image by integrating the motorized stages and the image analysis. The result shows that the optical resolution of the positioning system can achieve 15.6233 µm/pixel without influencing the laser path for the cantilever detection, and the deviation of the motor positioning system can be controlled within ±10 µm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:08:54Z (GMT). No. of bitstreams: 1 U0001-3007202003465500.pdf: 7229550 bytes, checksum: e6eb13dec327630d5e2eaef903f919a0 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 論文審定書 I 誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 2 1.2.1原子力顯微鏡原理 2 1.2.2原子力顯微鏡掃描模式 6 1.2.3大量測範圍力量量測系統 7 1.2.4 光學影像定位系統 9 1.3 研究目的 18 1.4 內容簡介 18 第二章 影像定位方法與原理 19 2.1 感光耦合元件 19 2.2 影像定位方法 20 2.3 邊緣偵測方法 30 第三章 影像定位系統 34 3.1 結合力量量測與影像定位之系統架構 34 3.2 影像定位系統硬體設計 37 3.3 影像定位系統軟體介面設計與操作 39 3.3.1 CCD影像水平校正 40 3.3.2 影像解析度校正 45 3.3.3 陣列量測模式 51 3.3.4 自定位置量測模式 55 第四章 力量量測系統定位誤差測試 58 4.1 解析度校正測試 58 4.2 馬達定位誤差測試 61 4.3 CCD過度曝光改善 69 第五章 結論與未來展望 72 參考文獻 74 附錄A 矩形懸臂探針(ContGD-G, Budget Sensors) 76 附錄B R2L2S1P1樣品規格與特性 77 | |
dc.language.iso | zh-TW | |
dc.title | 應用於力量量測系統之微米級影像定位系統之設計與開發 | zh_TW |
dc.title | Design and Development of a Vision-based Microscale Positioning System for a Force Measurement System | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 高豐生(Feng-Sheng Kao),楊志文(Chih-Wen Yang) | |
dc.subject.keyword | 原子力顯微鏡,CCD,影像定位,邊緣偵測,LabVIEW, | zh_TW |
dc.subject.keyword | AFM,CCD,Vision-based positioning,Edge detection,LabVIEW, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU202002073 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3007202003465500.pdf 目前未授權公開取用 | 7.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。