請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16301
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭振華(Jen-hwa Guo) | |
dc.contributor.author | Mu-Hua Chen | en |
dc.contributor.author | 陳霂華 | zh_TW |
dc.date.accessioned | 2021-06-07T18:08:51Z | - |
dc.date.copyright | 2021-02-22 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-07 | |
dc.identifier.citation | [1] R. Murphey and P. M. Pardalos, Cooperative control and optimization. Springer Science Business Media, 2002. [2] W. Munk, P. Worcester, and C. Wunsch, Ocean acoustic tomography. Cambridge university press, 2009. [3] C.-F. Huang, Y.-W. Li, and N. Taniguchi, 'Mapping of ocean currents in shallow water using moving ship acoustic tomography,' The Journal of the Acoustical Society of America, vol. 145, no. 2, pp. 858-868, 2019. [4] K.-K. Oh, M.-C. Park, and H.-S. Ahn, 'A survey of multi-agent formation control,' Automatica, vol. 53, pp. 424-440, 2015. [5] J. M. Soares, A. P. Aguiar, A. M. Pascoal, and M. Gallieri, 'Triangular formation control using range measurements: An application to marine robotic vehicles,' IFAC Proceedings Volumes, vol. 45, no. 5, pp. 112-117, 2012. [6] T. Balch and R. C. Arkin, 'Behavior-based formation control for multirobot teams,' IEEE transactions on robotics and automation, vol. 14, no. 6, pp. 926-939, 1998. [7] M. A. Lewis and K.-H. Tan, 'High precision formation control of mobile robots using virtual structures,' Autonomous robots, vol. 4, no. 4, pp. 387-403, 1997. [8] T. Vicsek and A. Zafeiris, 'Collective motion,' Physics reports, vol. 517, no. 3-4, pp. 71-140, 2012. [9] S. Napora and D. A. Paley, 'Observer-based feedback control for stabilization of collective motion,' IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1846-1857, 2012. [10] L. Brinón-Arranz and A. Seuret, 'Cooperative translation control based on consensus with reference velocity: A source-seeking application,' in 2013 European Control Conference (ECC), 2013: IEEE, pp. 2813-2818. [11] L. Brinón-Arranz and L. Schenato, 'Consensus-based source-seeking with a circular formation of agents,' in 2013 European Control Conference (ECC), 2013: IEEE, pp. 2831-2836. [12] R. Sepulchre, D. A. Paley, and N. E. Leonard, 'Stabilization of planar collective motion: All-to-all communication,' IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 811-824, 2007. [13] D. Paley, N. E. Leonard, and R. Sepulchre, 'Collective motion: Bistability and trajectory tracking,' in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), 2004, vol. 2: IEEE, pp. 1932-1937. [14] L. B. Arranz, A. Seuret, and C. C. De Wit, 'Elastic formation control based on affine transformations,' in Proceedings of the 2011 American Control Conference, 2011: IEEE, pp. 3984-3989. [15] L. Brinón-Arranz, A. Seuret, and C. Canudas-de-Wit, 'Cooperative control design for time-varying formations of multi-agent systems,' IEEE Transactions on Automatic Control, vol. 59, no. 8, pp. 2283-2288, 2014. [16] H. K. Khalil, Nonlinear systems. [17] W. Ren and Y. Cao, Distributed coordination of multi-agent networks: emergent problems, models, and issues. Springer Science Business Media, 2010. [18] 游文孝, '移動載具層析聲納系統之實現,' 工程科學及海洋工程學研究所, 國立臺灣大學, 2020年, 2020. [19] S. J. Norton, 'Tomographic reconstruction of 2-D vector fields: application to flow imaging,' Geophysical Journal International, vol. 97, no. 1, pp. 161-168, 1989. [20] B. CORNUELLE, W. MUNK, and P. WORCESTER, 'Ocean Acoustic Tomography From Ships,' JOURNAL OF GEOPHYSICAL RESEARCH, vol. 94, no. C5, pp. 6232-6250, 1989. [21] T. I. Fossen, 'Guidance and control of ocean vehicles,' University of Trondheim, Norway, Printed by John Wiley Sons, Chichester, England, ISBN: 0 471 94113 1, Doctors Thesis, 1999. [22] D. A. Paley, N. E. Leonard, and R. Sepulchre, 'Oscillator models and collective motion: Splay state stabilization of self-propelled particles,' in Proceedings of the 44th IEEE Conference on Decision and Control, 2005: IEEE, pp. 3935-3940. [23] A. P. Aguiar, L. Cremean, and J. P. Hespanha, 'Position tracking for a nonlinear underactuated hovercraft: Controller design and experimental results,' in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), 2003, vol. 4: IEEE, pp. 3858-3863. [24] A. P. Aguiar and J. P. Hespanha, 'Position tracking of underactuated vehicles,' in Proceedings of the 2003 American Control Conference, 2003., 2003, vol. 3: IEEE, pp. 1988-1993. [25] R. Tedrake, 'Underactuated robotics: Learning, planning, and control for efficient and agile machines course notes for MIT 6.832,' Working draft edition, vol. 3, 2009. [26] N. S. Nise, Control systems engineering. John Wiley Sons, 2020. [27] G. Tao, Adaptive control design and analysis. John Wiley Sons, 2003. [28] A. P. Aguiar and J. P. Hespanha, 'Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty,' IEEE transactions on automatic control, vol. 52, no. 8, pp. 1362-1379, 2007. [29] T. C. Vinh, 'Determination of added mass and inertia moment of marine ships moving in 6 degrees of freedom,' International Journal of Transportation Engineering and Technology, vol. 2, no. 1, p. 8, 2016. [30] J. Almeida, C. Silvestre, and A. Pascoal, 'Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty,' International Journal of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1549-1565, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16301 | - |
dc.description.abstract | 本文提出一種應用於移動載具聲層析之水面載具群隊的編隊控制設計方法。由於移動載具聲層析所使用之編隊隊形需由成對的載具使用聲層析收發器發送聲訊號掃描待測海域,本文以多載具平均分佈於圓隊形上互繞之編隊為目標,則其半徑之選定須滿足聲層析傳發器之訊號發送持續時間,載具速度設定則需考慮都普勒效應訊號處理濾波器設計的頻寬限制。本文提出之導航器首先輸入載具之初始位置,隊形上之導航點即自動收斂成繞圓形隊伍,並經由座標轉移矩陣產生導航點的軌跡。而載具之運動控制則根據反步控制器設計方法產生一個穩定的水面無人載具的欠驅動控制器以追蹤隨時移動之導航軌跡。 為驗證此算法,本文設計並製作一水面無人載具,並於基隆望海巷灣進行海域實驗。模擬與實驗結果顯示本方法可以產生滿足移動載具層析聲納系統所需的隊形,且水面無人載具在海流干擾下,可以穩定地航行。本文最後探討海流干擾、載具模式誤差及載具定位誤差對軌跡追蹤誤差之影響,其模擬與海域實驗結果呈現一致性,而海流干擾為主要之誤差源。 | zh_TW |
dc.description.abstract | This study proposes a formation controller for moving vehicle tomography (MVT). In general, pairs of transmitter-receivers are used to circle the water body to collect acoustic ray data for the tomography inversion of the current field. Circular trajectories are selected for multi-vehicle formation control to evenly distribute guidance points of vehicles. The radius of the trajectory circle must satisfy time constraints derived from MVT transmission durations, and the speed of vehicles is limited by the filter bandwidth for processing the Doppler effects. The guidance law required initial positions of vehicles so that guidance trajectories converge to be a circular formation and generate a set of desired guiding positions through a transformation matrix. The vehicle motion controller is then designed for tracking using a back-stepping method for an under-actuated surface vehicle model. To test this algorithm, an unmanned testbed vehicle was manufactured. Also, experiments at sea were carried out at WanHaiXiang Bay, Keelung. Both simulations and experimental results show that the formation control can generate the desired circular trajectories, and the unmanned vehicle can navigate along with the desired guidance points under the influences of unknown sea currents. Finally, the tracking errors resulting from the influence of unknown sea currents, vehicle model uncertainties, and GPS positioning errors are discussed. Simulations and experimental results show that the order of magnitudes of the tracking errors caused by various uncertainties is mainly due to the sea currents. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:08:51Z (GMT). No. of bitstreams: 1 U0001-0402202111304300.pdf: 5291720 bytes, checksum: 425ba00074808c3a875e94f353a270de (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 摘要 III ABSTRACT IV CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XII LIST OF SYMBOLS XIII Chapter 1 Introduction 1 1.1 Overview and Motivation 1 1.2 Thesis organization 3 Chapter 2 Controller Design 6 2.1 Moving Vehicle Tomography 6 2.2 Reference Frames and Dynamic Model 11 2.3 Controller Design 14 2.3.1 Guidance 14 2.3.2 Position Tracking 21 2.4 Simulation 26 Chapter 3 Vehicle Motion Model 29 3.1 Construction of ASV 29 3.2 The Steering Machine 31 3.3 The Electric Outboard motor 35 Chapter 4 Experiment 37 4.1 Experiment 1 – parameters tuning of position tracking controller 37 4.2 Experiment 2 – reference trajectory with different curvature 47 4.3 Experiment 3 – different speed in collective motion 52 4.4 Experiment 4 – Error Analysis 58 Chapter 5 Conclusions 65 Appendix 68 Appendix A 68 Appendix B 69 B.1 Method of Equivalent Ellipsoid 70 B.2 Strip Theory Method 70 Reference 77 | |
dc.language.iso | en | |
dc.title | 海洋聲層析之自主式水面載具編隊控制研究 | zh_TW |
dc.title | Formation Control of Autonomous Surface Vehicles for Acoustic Tomography | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃千芬(Chen-Fen Huang),江茂雄(Mao-Hsiung Chiang),黃盛煒(Sheng-Wei Huang),嚴惟果(Wei-Kuo Yen) | |
dc.subject.keyword | 欠驅動海洋無人載具,動力模型,反步控制器設計,移動載具聲層析, | zh_TW |
dc.subject.keyword | under-actuated marine vehicle,dynamic modeling,backstepping control,moving vehicle tomography, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202100499 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-02-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0402202111304300.pdf 目前未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。