請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16294完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王偉仲 | |
| dc.contributor.author | Sung-feng Tsai | en |
| dc.contributor.author | 蔡松峰 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:08:34Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-16 | |
| dc.identifier.citation | [1] W.C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1(1):1–17, 1991.
[2] R. Hooke and T.A. Jeeves. “direct search”solution of numerical and statistical problems. Journal of the ACM (JACM), 8(2):212–229, 1961. [3] T.M. Huang, W. Wang, and C.T. Lee. An efficiency study of polynomial eigenvalue problem solvers for quantum dot simulations. Taiwanese Journal of Mathematics, 14(3A):pp–999, 2010. [4] T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on some classical and modern methods. SIAM review, pages 385–482, 2003. [5] G.L.G. Sleijpen and H.A. Van der Vorst. A jacobi-davidson iteration method for linear eigenvalue problems. SIAM Review, pages 267–293, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16294 | - |
| dc.description.abstract | 在大型矩陣的特徵值求解程式中,適當地選擇參數將使得特徵值求解程式的效能明顯提升。特徵值求解程式的執行時間與其參數之間並沒有明確的函數關係,故採用直接搜尋法為其最佳化工具。然而,在許多直接搜尋法中,大量的函數計算往往耗費許多時間。為了提升效能,我們提出一個想法:若在某點上其函數值已不可能是最佳值,則暫停該函數值之計算。在特徵值求解程式的疊代過程中,我們獲取資訊:根據資訊以動態地決定是否暫停或繼續特徵值求解程式的執行。然後我們根據低準確度以及高準確度之函數值,分別對應於暫停點以及收斂點,以建構代理曲面。而在我們的計算機實驗中,的確顯示了以動態代理曲面輔助搜尋法,可以降低傳統代理曲面輔助搜尋法的執行時間,並以其搜尋到的最佳化參數提升特徵值求解程式的效能。 | zh_TW |
| dc.description.abstract | For using an iterative eigensolver to solve an eigenvalue problem with a large-scale matrix, adaptively choosing parameters will significantly improve its performance. Since there is no obvious relation between the execution time and parameters of an eigensolver, it is reasonable that using direct search method to optimize the parameters. In many direct search methods, however, it is likely that evaluating much number of function values is limited by time or cost. For reducing time or cost, one idea we present here is that we pause some function evaluations that have no chance to be optimal ones. During iterative process of an eigensolver, we monitor the information produced after each iteration to decide how we control iterative process dynamically: we determine whether iterations should be kept paused or restarted. We then construct a surrogate by using the function values with low accuracy and high one corresponding to paused points and convergent points, respectively. In our computer experiments, we show that the Dynamic Surrogate-Assisted Search (DSAS) Algorithm reduces the cost significantly. Hence, then we can tune the performance of an eigensolver efficiently. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:08:34Z (GMT). No. of bitstreams: 1 ntu-101-R97221045-1.pdf: 1311693 bytes, checksum: b393b0bb97e0c10d180cbc181903d391 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書……………………………………………………………… i 誌謝 ………………………………………………………………………………. ii 中文摘要 ………………………………………………………………………… iii 英文摘要 …………………………………………………………………………. iv 1. Introduction ………………………………………………………………….. 1 2. Eigensolver ………………………………………………………………….. 3 2.1 Jocabi-Davidson Algorithm ……………………………………………... 3 2.2 Polynomial Jocabi-Davidson Algorithm ......... 5 2.3 Performance Tuning ........................... 7 3. Dynamic Surrogate .......………………………………………………………….. 7 3.1 Initialization ............................... 8 3.2 Function Predictions or Evaluations .......... 9 3.2.1 Choosing Initial Parameters and Executing Eigensolver ........................................ 9 3.2.2 Predicting Function Values and Restarting Eigensolver ....................................... 10 3.3 Searching an Optimal Point .................. 12 3.3.1 Constructing Surrogate .................. 12 3.4 Defining New Search Region .................. 15 3.5 Dynamic Surrogate-Assisted Search Algorithm . 17 4. Convergence Theory ………………………………………………………….. 19 5. Numerical Experiments .......................... 24 5.1 Cylinder Quantum Dot Problem ................ 24 5.1.1 Matrix size 1848x1848 ................... 25 5.1.2 Matrix size 31209x31209 ................. 29 5.2 Pyramid Quantum Dot Problem ................. 33 6. Conclusions .................................... 38 References…………………………………………………………………......... 38 | |
| dc.language.iso | en | |
| dc.subject | 特徵值求解程式 | zh_TW |
| dc.subject | 動態代理曲面 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 直接搜尋法 | zh_TW |
| dc.subject | DACE | zh_TW |
| dc.subject | direct search method | en |
| dc.subject | DACE | en |
| dc.subject | eigensolver | en |
| dc.subject | dynamic surrogate | en |
| dc.subject | optimization | en |
| dc.title | 以動態代理曲面輔助搜尋特徵值求解程式之最佳效能參數 | zh_TW |
| dc.title | Performance Tuning of Eigensolver via Dynamic Surrogate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞彬,蔡碧紋 | |
| dc.subject.keyword | 特徵值求解程式,動態代理曲面,最佳化,直接搜尋法,DACE, | zh_TW |
| dc.subject.keyword | optimization,direct search method,dynamic surrogate,eigensolver,DACE, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
