Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16282Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許輔(Fuu Sheu) | |
| dc.contributor.author | Hsuan Su | en |
| dc.contributor.author | 蘇 暄 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:08:03Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-18 | |
| dc.identifier.citation | 許瑞祥。1993。靈芝概論。萬年出版社。台北市。
馬儷娟。2009。探討重組靈芝蛋白 LZ-8 刺激 CD4+ CD25+ T細胞分泌細胞激素及免疫調節功能。國立陽明大學醫學生物技術暨檢驗學系暨研究所碩士論文。 陳肖芹。2010。靈芝多醣 PSG 與靈芝蛋白 LZ-8 活化小鼠腹腔巨噬細胞及促進第一型 T 輔助細胞免疫反應之功效。國立台灣大學生物資源暨農學院園藝學研究所碩士論文。 葉鎮豪。2010。靈芝蛋白 Ling Zhi-8 鍵結於奈米金粒子促進巨噬細胞及脾細胞免疫調節能力與其粒徑依賴性之探討。國立台灣大學生物資源暨農學院園藝學研究所碩士論文。 Aggarwal, S.; Ghilardi, N.; Xie, M.H.; de Sauvage, F.J.; Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003, 278, 1910–1914. Bastos, K.R.B.; Marinho, C.R.F.; Barboza, R.; Russo, M.; Alvarez, J.M.; Lima, M.R.D. What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells? Microbes Infec. 2004, 6:630-636. Belz, G.T.; Nutt, S.L. Transcriptional programming of the dendriti cell network. Nat. Rev. Immunol. 2012, 12: 101-113. Bettelli, E.; Oukka, M.; Kuchroo, V.K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 2007, 8: 345-350. Bouguermouh, S.; Fortin, G.; Baba, N.; Rubio, M.; Sarfati, M. CD28 co-stimulation down regulates TH17 development. PloS one. 2009, 4(3): 1-11. Cao, L.Z. ; Lin, Z.B. Regulation on maturation and function of dendritic cells by Ganoderma lucidum polysaccharides. Immunol. Lett. 2002, 83: 163–169. Cao, L.Z. ; Lin, Z.B. Regulatory effect of Ganoderma lucidum polysaccharides on cytotoxic T-lymphocytes induced by dendritic cells in vitro. Acta. Pharmacol. Sin. 2003, 24: 321–326. Chien, C.M.; Cheng, J.L.; Chang, W.T.; Tien, M.H.; Tsao, C.M.; Chang, Y.H.; Chang, H.Y.; Hsieh, J.F.; Wong, C.H.; Chen, S.T. Polysaccharides of Ganoderma lucidum alter cell immunophenotypic expression and enhance CD56+ NK-cell cytotoxicity in cord blood. Bioorg. Med. Chem. 2004, 12: 5603–5609. Cua, D.J.; Sherlock, J.; Chen, Y.; Murphy, C.A.; Joyce, B. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003, 421:744–48. Cua, D.J.; Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010, 10: 479-489. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 2008, 8: 337-348. El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 1998, 49: 1651–1657. Ferretti, S.; Bonneau, O.; Dubois, G.R.; Jones, C.E.; Trifilieff, A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol. 2003, 170(4): 2106-2112. Gao, J.J.; Min, B.S.; Ahn, E.M.; Nakamura, N.; Lee, H.K.; Hattori, M. New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull. 2002, 50: 837–840. Gao, Y.; Zhou, S.; Jiang, W.; Huang, M.; Dai, X. Effects of ganopoly (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol. Invest. 2003, 32: 201–215. Gao, Y., Gao, H.; Chan, E.; Tang, W.; Xu, A.; Yang, H.; Huang, M.; Lan, J.; Li, X.; Duan, W.; Xu, C.; Zhou, S. Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted from Ganoderma lucidum, in mice. Immunol. Invest. 2005, 34: 171–198. Gonzalez, A.G.; Leon, F.; Rivera, A.; Padron, J.I.; Gonzalez-Plata, J.; Zuluaga, J.C.; Quintana, J.; Estevez, F.; Bermejo, J. New lanostanoids from the fungus Ganoderma concinna. J. Nat. Prod. 2002, 65: 417–421. Haak-Frendscho, M.; Kino, K.; Sone, T.; Jardieu, P. Ling Zhi-8: A novel T cell mitogen induces cytokine production and upregulation of ICAM-1 expression. Cell. Immunol. 1993, 150: 101–113. Hajjaj, H.; Mace, C.; Roberts, M.; Niederberger, P.; Fay, L.B. Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors. Appl. Environ. Microbiol. 2005, 71: 3653–3658. Happel, K.I.; Zheng, M.; Young, E.; Quinton, L.J.; Lockhart, E.; Ramsay, A.J.; Shellito, J.E.; Schurr, J.R.; Bagby, G.J.; Nelson, S.; Kolls, J.K. Cutting edge: roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 2003, 170(9): 4432-4436. Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing CD4+ effector T cells develope via a linage distinct from the T helper type 1 and 2 linages. Nat. Immunol. 2005, 6: 1123-1132. Hikino, H.;Konno, C.; Mirin, Y.; Hayashi, T. Isolation and hypoglycemic activity of Ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta. Med. 1985; 51(4): 339-340. Hsu, H.Y.; Hua, K.F.; Lin, C.C.; Lin, C.H.; Hsu, J.; Wong, C.H. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J. Immunol. 2004, 173: 5989-5999. Hsu, H.Y.; Hua, K.F.; Wu, W.C.; Hsu, J.; Weng, S.T.; Lin, T.L.; Liu, C.Y.; Hseu, R.S.; Huang, C.T. Reishi immuno-modulation protein induces interleukin-2 expression via protein kinase-dependent signaling pathways within human T cells. J. Cell. Physiol. 2008, 215: 15-26. Hua, K.F.; Hsu, H.Y.; Chao, L.K.; Chen, S.T.; Yang, W.B.; Hsu, J.; Wong, C.H. Ganoderma Lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J. Cell. Physiol. 2007, 212: 537–550. Huang, L.; Sun, F.; Liang, C. Y.; He, Y. X.; Bao, R.; Liu, L. X.; Zhou, C. Z. Crystal structure of LZ-8 from the medicinal fungus Ganoderma lucidum. Proteins: Struct., Funct., Bioinf. 2009, 75 (2): 524–527. Huie, C.W.and Di, X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J. Chromatogr. B. 2004, 812: 241–257. Iwakura, Y.; Ishigama, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity. 2011, 34:149-162. Jian-jun, L.; Lin-sheng, L.; Chuan-lin, Y.; Zheng-guang,Z.; Qun, Z.; Shu-guang, W. Effect of Ganoderma lucidum polysaccharides on tumor cell nucleotide content and cell cycle in S180 ascitic tumor-bearing mice. J. Southern. Med. Uni. 2007, 27: 1003–1005. Jiang, Y., Wang, H.; Lu, L.; Tian, G.Y. Chemistry of polysaccharide Lzps-1 from Ganoderma lucidum spore and anti-tumor activity of its total polysaccharides. Yao. Xue. Xue. Bao. 2005, 40: 347–350. Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 2003, 3: 984-993. Kapsenberg, M.L. Dendrictic-cell control of pathogen-driven T- cell polarization. Nat. Rev. Immunol. 2003, 3:984-993. Kim, H.W. and Kim, B.K. Biomedicinal triterpenoids of Ganoderma lucidum (Curt.:Fr.) P. Karst. (Aphyllophoromycetideae). Int. J. Med. Mush. 1999, 1: 121–138. Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H. Isolation and characterization of a new immunomodulatory protein, Ling Zhi-8 (LZ-8), from Ganoderma lucidum. J. Biol. Chem. 1989, 264 (1): 472–478. Kino, K.; Mizumoto, K.; Sone, T.; Yamaji, T.; Watanabe, J.; Yamashita, A.; Yamaoka, K.; Shimizu, K.; Ko, K.; Tsunoo, H. An immunomodulating protein, Ling Zhi-8 (LZ-8) prevents insulitis in non-obese diabetic mice. Diobetologia. 1990, 33:713-718. Kino, K.; Sone, T.; Watanabe, J.; Yamashita, A.; Tsuboi, H.; Miyajima, H.; Tsunoo, H. Immunomodulator, LZ-8, prevents antibody production in mice. Int. J. Immunopharmac. 1991, 13(8): 1109-1115. Koll, J.K.; Linden A. Interleukin-17 family members and inflammation. Immunity. 2004, 21: 467-476. Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27: 485-517. Kumar, H.; Kawai, Taro.; Akira, S. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 2009, 388: 621-625. Langrish, C.L.; Chen. Y.; Blumenschein, W.M.; Mattson, J.; Basham, B. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201:233–40. Laurence, A.; Tato, C.M.; Davidson, T.S.; Kanno, Y.; Chen, Z.; Yao, Z.; Blank, R.B.; Meylan, F.; Siegel, R.; Hennighausen, L.; Shevach, E.M.; O’Shea, J.J. Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity. 2007, 26: 371-381. Li, C.-H.; Chen, P.-Y.; Chang, U.-M.; Kan, L.-S.; Fang, W.-H.; Tsai, K.-S.; Lin, S.-B.; Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci. 2005, 77: 252–265. Li, Z.; Liu, J.; Zhao, Y. Possible mechanism underlying the antiherpetic activity of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J. Biochem. Mol. Biol. 2004, 38 (1) 34-40. Li, L.; Lei, L.S.; Yu, C.L. Changes of serum interferon-gamma levels in mice bearing S-180 tumor and the interventional effect of immunomodulators. Nan Fang Yi Ke Da Xue Xue Bao 2008, 28: 65–68. Lin, W.H.; Hung, C.H.; Hsu, C.I. and Lin, J.Y. Dimerization of the N-terminal amphipathic alpha-helix domain of the fungal immunomodulatory protein from Ganoderma tsugae (Fip-gts) defined by a yeast two-hybrid system and site-directed mutagenesis. J. Bio.l Chem. 1997, 272: 20044-20048. Lin, S.B.; Li, C.H.; Lee, S.S.; Kan, L.S. Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C, activating mitogen-activated protein kinases and G2-phase cell cycle arrest. Life Sci. 2003, 72: 2381–2390. Lin, Y. L.; Liang, Y. C.; Tseng, Y. S.; Huang, H. Y.; Chou, S. Y.; Hseu, R. S.; Huang, C. T.; Chiang, B. L. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-κB and MAPK pathways. J. Leukocyte Biol. 2009, 86 (4), 877–89. Lin, C.C.; Yu, Y.L.; Shin, C.C.; Liu, K.J.; Ou, K.L.; Hong, L.Z.; Chen, J.D.C.; Chu, C.L. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol. Immunother. 2011, 60: 1019-1027. Liu, W.; Wang, H.; Pang, X.; Yao, W.; Gao, X. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int. J. Biol. Macromol. 2010, 46: 451-457. Liu, X.K.; Clements, J.L.; Gaffen, S.L. Signaling through the murine T cell receptor induces IL-17 production in the absence of costimulation, IL-23 or dendritic cells. Mol. Cells. 2005, 20(3): 339-347. Lohoff, M. and Mak, T.W. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat. Rev. Immonol. 2005, 5: 125-135. Lutz, M.B.; Schular, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance? Trens Immunol. 2002, 23(9): 446-449. McGeachy, M.J.; Cua, D.J. Th17 cell differentiation: the long and winding road. Immunity. 2008, 28:445-453. Michel, M.L.; Keller, A.C.; Paget, C.; Fujio, M.; Trottein, F.; Savage, P.B.; Wong, C.H.; Schneider, E.; Dy, M.; Leite-de-Moraes, M.C. Identification of an IL-17–producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 2007, 204: 995-1001. Min, B.S.; Nakamura, N.; Miyashiro, H.; Bae, K.W.; Hattori, M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem. Pharm. Bull. 1998, 46: 1607–1612. Miyasaka, N.; Inoue, H.; Totsuka, T.; Koike, R.; Kino, K.; Tsunoo, H. An immunomodulatory protein, Ling Zhi-8, facilitates cellular interaction through modulation of adhesion molecules. Biochem. Biophys. Res. Commun. 1992, 186: 385–390. Mizushina, Y.; Takahashi, N.; Hanashima, L.; Koshino, H.; Esumi, Y.; Uzawa, J.; Sugawara, F.; Sakaguchi, K. Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete, Ganoderma lucidum. Bioorg. Med. Chem. 1999, 7: 2047–2052. Morigiwa, A.; Kitabatake, K.; Fujimoto, Y.; Ikekawa, N. Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem. Pharm. Bull. 1986, 34: 3025–3028. Mucida, D.; Park, Y., Kim, G.; Turovskaya, O.; Scott, I.; Kronenberg, M.; Cheroutre, H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007, 13: 256-260. Murasugi, A., Tanaka, S., Komiyama,N., Iwata, N., Kino, K., Tsunoo, H., Sakuma, S. Molecular cloning of a cDNA and a gene encoding an immunomodulatory protein, Ling Zhi-8, from a fungus, Ganoderma lucidum. J. Biol. Chem. 1991, 266 (4): 2486-2493. O’Connor Jr, W.; Zenewicz, L.A.; Flavell, R.A. The dual nature of TH17 cells: shifting the focus to function. Nat. Immunol. 2010, 11: 471-476. Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H. Wang, Y. Hood, L.; Zhu, Z,; Tian, Q.; Dong, Chen. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6(11): 1133-1141. Passos, S.T.; Silver, J.S.; O’Hara, A.C.; Sehy, D.; Stumhofer, J.S.; Hunter, C.A. IL-6 Promotes NK Cell Production of IL-17 during Toxoplasmosis. J.Immunol. 2010, 184: 1776-1783. Paterson, R.R.M. Ganoderma–a therapeutic fungal biofactory. Phytochemistry. 2006, 67: 1985–2001. Reis e Sousa, C. Activation of dendritic cells: translating innate into adaptive immunity. Curr. Opin. Immunol. 2004, 16: 21-25. Sliva, D. Ganoderma lucidum (Reishi) in cancer treatment. Integr. Cancer. Ther. 2003, 2: 358–364. Shao, B.M.; Dai, H.; Xu, W.; Lin, Z.B.; Gao, X.M. Immune receptors for polysaccharides from Ganoderma lucidum. Biochem. Biophys. Res. Commun. 2004, 323: 133–141. Sporri, R.; Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 2005, 6: 163-170. Sutton, C.E.; Lalor, S.J.; Sweeney, C.M.; Brereton, C.F.; Lavelle, E.C.; Mills, K.H.G. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity. 2009, 31: 331-341. Takatori, H.; Kanno, Y.; Watford, W.T.; Tato, C.M.; Weiss, G.; Ivanov, I.I.; Littman, D.R.; O ’ Shea, J.J. Lymphoid tissue inducer – like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 2008, 1: 35-41. Tanaka, S.; Ko, K.; Kino, K.; Tsuchiya, K.; Yamashita, A.; Murasugi, A.; Sakuma, S.; Tsunoo, H. Complete amino acid sequence of an immunomodulatory protein, ling zhi-8 (LZ-8). An immunomodulator from a fungus, Ganoderma lucidum, having similarity to immunoglobulin variable regions. J. Biol. Chem. 1989, 264 (28): 16372–16377. Timo, H.; Niedermeyer, J.; Lindequist, U.; Mentel, R.; Gordes, D.; Schmidt, E.; Thurow, K.; Lalk, M. Antiviral terpenoid constituents of Ganoderma pfeifferi. J. Nat. Prod. 2005, 68: 1728–1731. Tomoda, M.; Gonda R.; Kasahara, Y.; Hikino, H. Glycan structures of ganoderans b and c, hypoglycemic glycans of ganoderma lucidum fruit bodies. Phytochemistry. 1986, 25(12): 2817-2820. Tong, M. H.; Chien, P. J.; Chang, H. H.; Tsai, M. J.; Sheu, F. High processing tolerances of immunomodulatory proteins in Enoki and Reishi mushrooms. J. Agric. Food Chem. 2008, 56 (9): 3160–3166. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3: 133-146. Uhlig, H.H.; McKenzie, B.S.; Hue, S.; Thompson, C.; Joyce-Shaikn, B.; Stepankova, R.; Robinson, N.; Buonocore, S.; Tlaskalova-Hogenova, H.; Cua, D.J.; Powrie, F. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006, 25: 309–318. van der Hem, L. G.; van der Vliet, J. A.; Bocken, C. F.; Kino, K.; Hoitsma, A. J.; Tax, W. J. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation. 1995, 60 (5): 438–443. Veldhoen, M.; Hocking, R.J.; Flavell, R.A.; Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 2006, 7: 1151-1156. Wang, S.Y.; Hsu, M.L.; Hsu, H.C.; Tzeng, C.H.; Lee, S.S.; Shiao, M.S.; Ho, C.K. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer. 1997, 70: 699-705. Watford, W.T.; Moriguchi, M.; Morinobu, A.; O’Shea, J.J. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003, 14: 361-368. Weaver, C.T.; Hatton, R.D.; Mangan, P.R.; Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T vell lineages. Annu. Rev. Immunol. 2007, 25: 821-852. Workman, C.J.; Szymczak-Workman, A.L.; Collison, L.W.; Pillai, M.R.; Vignali, D.A.A. The development and function of regulatory T cells. Cell. Mol. Life Sci. 2009, 66: 2603-2622. Xiao, S.; Jin, H.; Korn, T.; Liu, S.M.; Oukka, M.; Lim, B.; Kuchroo, V.K. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 2008, 181(4): 2277-2284. Xie, J.T.; Wang, C.Z.; Wicks, S.; Yin, J.J.; Kong, J.; Li, J.; Li, Y.C.; Yuan, C.S. Ganoderma lucidum extract inhibits proliferation of SW 480 human colorectal cancer cells. Exp. Oncol. 2006, 28: 25–29. Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39 (1): 15-27. Xue, Q.; Ding, Y.; Shang, C.; Jiang, C.; Zhao, M. Functional expression of LZ-8, a fungal immunomodulatory protein from Ganoderma lucidum in Pichia pastoris. J. Gen. Appl. Microbiol. 2008, 54 (6): 393–8. Yeh, C.H.; Chen, H.C.; Yang, J.J.; Chuang, W.I.; Sheu, F. Polysaccharides PS-G and Protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. J. Agric. Food Chem. 2010, 58: 8535-8544. Ying-bo, L.; Yu-hua, L.; Rui, W.; Zhi-bin, L. Effect of Ganoderma lucidum polysaccharides (GlPS) on tumor-endothelium interactions. Chin. Pharmacol. Bull. 2008, 39: 250–253. Zhang, J.; Tang, Q.; Zimmerman-Kordmann, M.; Reutter, W.; Fan, H. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum. Life Sci. 2002, 71: 623–638. Zhang, H.N.; Lin, Z.B. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta. Pharmacol. Sin. 2004, 25(2): 191-195. Zhu, M.; Chang, Q.; Wong, L.K.; Chong, F.S.; Li, R.C. Triterpene antioxidants from Ganoderma lucidum. Phytother. Res. 1999, 13: 529–531. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16282 | - |
| dc.description.abstract | 靈芝自古以來被認為是上藥之藥,性平無毒,具有多方面的效果,其中的活性成分及其功效已受到相當的關注。研究顯示純化自 Ganoderma lucidum 之靈芝免疫調節蛋白 Ling Zhi-8 (LZ-8) 能刺激樹突細胞、巨噬細胞及 T 淋巴細胞的活化或增生,促使細胞產生細胞素及提升細胞表面分子的表現量。在抗原呈現細胞的部份,前人研究發現 LZ-8 能透過細胞表面的 TLR4 受器活化人類樹突細胞,但對小鼠巨噬細胞的活化卻與 TLR4無關。因此本論文使用重組 LZ-8 蛋白 (rLZ-8 ),以 TLR4 缺陷型小鼠骨髓衍生性樹突細胞進行實驗,希望能釐清前人相矛盾的結果。本研究結果顯示雖然受 rLZ-8 刺激後,相較於原生型骨髓衍生性樹突細胞,TLR4 缺陷型樹突細胞之細胞素產生量會顯著降低,但是 rLZ-8 仍能促使 TLR4 缺陷型小鼠骨髓衍生性樹突細胞表面分子表現量提昇,且無論表面是否具 TLR4 受器,骨髓衍生性樹突細胞皆能與 FITC 螢光標定的 rLZ-8 蛋白結合。此外,TLR4 缺陷型樹突細胞受 rLZ-8 刺激後,也仍具有促使 T 細胞增生之活性。上述結果顯示 rLZ-8 於細胞表面的受器並非只侷限於單一的 TLR4 受器。
針對 T 細胞反應的部分,除了已知的第一型輔助性 T 細胞 (type 1 helper T cell, TH1) 反應以及調節性 T 細胞 (regulatory T cell, Treg) 反應,在本研究中亦發現 rLZ-8 能刺激免疫細胞產生介白素-17A (interleukin-17A, IL-17A)。進一步探討顯示,於小鼠脾臟細胞中,rLZ-8 所誘發的 IL-17A,主要可能來自表型特徵為 CD3e- CD4- B220- CD11c- NK1.1- 的先天性 IL-17 產生細胞,且這群細胞亦無法特異性辨識 α-GalCer: CD1d 複合物,因此目前結果仍無法判定其為何種細胞。不過直接以 rLZ-8 刺激分離出的 CD4+ T 細胞,亦可以促使 IL-17A 的產生,雖然胞內染色結果並不明顯,但由於 rLZ-8 刺激 IL-17 產生之能力會受維他命 A 酸所抑制,顯示 rLZ-8 的刺激除了能促使先天性 IL-17A 產生細胞活化,可能也與 TH17 的反應相關,後續仍需以 real-time PCR 確認受 rLZ-8 所活化之 IL-17A 產生細胞所具有的特性。此外,未來的研究可繼續深入探討 rLZ-8 的刺激,與 TH1、Treg 相關反應以及 IL-17A 產生細胞之間的關係,進一步釐清 LZ-8 蛋白於免疫細胞上的受器。 | zh_TW |
| dc.description.abstract | Reishi, also known as Ling-Zhi, are biosidiomycetous fungi. Because of it poceesed various biological activeties in different aspects and with little or no side effects, this fungi were used as traditional herb for over two millennia in Asia. Ling Zhi-8 (LZ-8), an immunomodulatory protein purified from Ganoderma lucidum has been revealed to induce cell proliferation, cytokine production and surface marker expression in various immune cells including dendritic cells, macrophages and T lymphocytes. Previous report showed that LZ-8 induced cytokines production in human monocyte-derived dendritic cells through Toll-like receptor 4 (TLR4). However, the others researches claimed that LZ-8 could activate TLR4-/- mouse peritoneal macrophages. Hence, we used recombinant LZ-8 (rLZ-8) and mice bone marrow-derive dendritic cells (BM-DCs) to elucidate the conflicting results. Although cytokine produtions induced by rLZ-8 were reduced in TLR4-/- BM-DCs in our study, surface markers expression still enhanced on TLR4-/- BM-DCs in response to rLZ-8 stimulation. In addition, FITC-labeld rLZ-8 could bind to BM-DCs regardless of wether the cells equipped TLR4 or not. Moreover, rLZ-8 activated TLR4-/- BM-DCs induced T cell proliferation as WT BM-DCs did. Thus we suggested that TLR4 was not the only receptor for rLZ-8 on the surface of APCs.
On T lymphocytes, stimulation of LZ-8 has been reported to induce TH1 cells or Treg cells response. In the present study, we proposed that mice splenocytes or isolated CD4+ T cells stimulated with rLZ-8 also resulted in IL-17A production. In mice splenocytes, rLZ-8 induced IL-17A producing cells principally belonged to non T cell population. These cells might be a kind of innate IL-17A producing cell which was characterized as CD3e-, CD4-, B220-, CD11c-, NK1.1- and could not react with α-GalCer: CD1d complex. Although IL-17A intracellular staining of splenocytes or isolated CD4+ T cells stimulated with rLZ-8 were not remarkable, the production of IL-17A did detect by ELISA in the culture supernatant; Besides, IL-17A production in CD4+ T cells directily stimulated with rLZ-8 was inhibited in the presence of retinoic acid. These resulte indicated that rLZ-8 might induce TH17 response, in addition to activating innate IL-17A producing cells. Further studuies by real-time PCR should be carried out to confirm the properties of rLZ-8 inducde IL-17A producing cells. The relationship between TH1, Treg and TH17 response induced by rLZ-8, and the unknown receptor other than TLR4 can still be topics of our future studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:08:03Z (GMT). No. of bitstreams: 1 ntu-101-R99628204-1.pdf: 4016136 bytes, checksum: d22a603e36a369f1b0181bcd0803533f (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract V 總目錄 VII 圖表目錄 X 壹、前人研究 1 一、靈芝簡介 1 二、靈芝中的活性成分 2 2.1. 靈芝三萜類 2 2.2. 靈芝多醣 4 2.3. 靈芝免疫調節蛋白 LZ-8 5 2.3.1. LZ-8之分子及生化特性 5 2.3.2. LZ-8之免疫調節活性 7 2.3.3. 重組 LZ-8 蛋白之異體表現 10 三、樹突細胞 11 四、介白素-17 與介白素-17分泌細胞 13 4.1. IL-17 家族之細胞素 13 4.2. 輔助性 T 細胞的極化與亞型 15 4.3. IL-17 分泌型輔助性 T 細胞 16 4.4. 先天性 IL-17A 產生細胞 18 貳、材料與方法 21 一、實驗動物 21 二、重組 LZ-8 蛋白質之純化 21 三、小鼠骨髓衍生性樹突細胞培養 22 四、流式細胞儀分析細胞表面分子 25 五、蛋白質之異硫氰胺酸螢光素標定 26 六、螢光標定蛋白與骨髓衍生性樹突細胞之親和試驗 28 七、T 細胞的純化分離 29 八、CFSE 標定之 T 細胞增生試驗 32 九、胞內染色技術 34 十、酵素免疫連結分析 36 十一、統計分析 38 參、研究結果 39 一、rLZ-8 對於小鼠骨髓衍生性樹突細胞的活化 39 1.1. rLZ-8 刺激骨髓衍生性樹突細胞表面分子之表現 39 1.2. rLZ-8 刺激骨髓衍生性樹突細胞產生細胞素 40 1.3. 異硫氰酸螢光素標定 rLZ-8 與骨髓衍生性樹突細胞之親合作用 41 1.4. rLZ-8 刺激之小鼠骨髓衍生性樹突細胞促使 T 細胞增生 42 1.5. rLZ-8 活化之小鼠骨髓衍生性樹突細胞刺激輔助性 T 細胞產生細胞素 43 二、rLZ-8 誘導細胞素 IL-17A 的產生 43 2.1. rLZ-8 促使免疫細胞產生 IL-17A 43 2.2. 小鼠脾臟細胞之細胞素產生隨 rLZ-8 刺激時間的變化 44 2.3. 胞內染色法分析 IL-17A 產生細胞 46 2.4. rLZ-8 直接刺激 T 細胞增生並促使 IL-17A 產生 47 2.5. rLZ-8 直接刺激輔助性 T 細胞產生 IL-17A 47 肆、討論 50 一、rLZ-8 對於小鼠骨髓衍生性樹突細胞的活化與 TLR4 受器之相關性 50 二、rLZ-8 刺激 IL-17A 的產生 53 伍、參考文獻 58 附錄 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | TLR4 受器 | zh_TW |
| dc.subject | 小鼠骨髓衍生性樹突細胞 | zh_TW |
| dc.subject | Ling Zhi-8 (LZ-8) | zh_TW |
| dc.subject | 靈芝免疫調節蛋白 | zh_TW |
| dc.subject | Ganoderma lucidum | zh_TW |
| dc.subject | TH17 | zh_TW |
| dc.subject | 先天性 IL-17 產生細胞 | zh_TW |
| dc.subject | 介白素-17A | zh_TW |
| dc.subject | IL-17A | en |
| dc.subject | TH17 | en |
| dc.subject | innate IL-17 producing cells | en |
| dc.subject | Ganoderma lucidum | en |
| dc.subject | Toll-like receptor 4 | en |
| dc.subject | mice bone marrow-derive dendritic cells | en |
| dc.subject | Ling Zhi-8 (LZ-8) | en |
| dc.subject | Reishi immunolmodulatory protein | en |
| dc.title | 靈芝免疫調節蛋白 Ling Zhi-8 活化小鼠骨髓衍生性樹突細胞及刺激免疫細胞產生介白素-17A 之探討 | zh_TW |
| dc.title | Immunomodulatory Protein Ling Zhi-8 of Ganoderma lucidum Activates Mouse Bone Marrow-derived Dendritic Cells and Stimulates IL-17A Production in Immune Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周志輝(Chi-Fai Chau),蔣恩沛(Chiang En-Pei),繆希椿(Shi-Chuen Miaw),莊雅惠(Ya-Hui Chuang) | |
| dc.subject.keyword | Ganoderma lucidum,靈芝免疫調節蛋白,Ling Zhi-8 (LZ-8),小鼠骨髓衍生性樹突細胞,TLR4 受器,介白素-17A,先天性 IL-17 產生細胞,TH17, | zh_TW |
| dc.subject.keyword | Ganoderma lucidum,Reishi immunolmodulatory protein,Ling Zhi-8 (LZ-8),mice bone marrow-derive dendritic cells,Toll-like receptor 4,IL-17A,innate IL-17 producing cells,TH17, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| Appears in Collections: | 園藝暨景觀學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 3.92 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
