請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16268
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴飛羆(Feipei Lai) | |
dc.contributor.author | Hang Jang | en |
dc.contributor.author | 張涵 | zh_TW |
dc.date.accessioned | 2021-06-07T18:07:28Z | - |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-31 | |
dc.identifier.citation | 1. Deku, J.G., et al., The Epidemiology of Bloodstream Infections and Antimicrobial Susceptibility Patterns: A Nine-Year Retrospective Study at St. Dominic Hospital, Akwatia, Ghana. Journal of Tropical Medicine, 2019. 2019: p. 6750864. 2. Sheng, W.H., et al., Comparative impact of hospital-acquired infections on medical costs, length of hospital stay and outcome between community hospitals and medical centres. J Hosp Infect, 2005. 59(3): p. 205-14. 3. Fleischmann, C., et al., Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med, 2016. 193(3): p. 259-72. 4. Fleischmann-Struzek, C., et al., The global burden of paediatric and neonatal sepsis: a systematic review. The Lancet Respiratory Medicine, 2018. 6(3): p. 223-230. 5. Kullberg, B.J. and M.C. Arendrup, Invasive Candidiasis. New England Journal of Medicine, 2015. 373(15): p. 1445-1456. 6. Opota, O., K. Jaton, and G. Greub, Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clinical Microbiology and Infection, 2015. 21(4): p. 323-331. 7. Morrell, M., V.J. Fraser, and M.H. Kollef, Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother, 2005. 49(9): p. 3640-5. 8. Taur, Y., et al., Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrob Agents Chemother, 2010. 54(1): p. 184-90. 9. Leroy, O., et al., Systemic antifungal therapy for proven or suspected invasive candidiasis: the AmarCAND 2 study. Annals of intensive care, 2016. 6(1): p. 2-2. 10. Sipsas, N.V. and D.P. Kontoyiannis, Invasive fungal infections in patients with cancer in the Intensive Care Unit. Int J Antimicrob Agents, 2012. 39(6): p. 464-71. 11. Huang, A.M., et al., Impact of Rapid Organism Identification via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Combined With Antimicrobial Stewardship Team Intervention in Adult Patients With Bacteremia and Candidemia. Clinical Infectious Diseases, 2013. 57(9): p. 1237-1245. 12. Timsit, J.-F., et al., Treatment of bloodstream infections in ICUs. BMC infectious diseases, 2014. 14: p. 489-489. 13. Lutwick, L. and G. Bearman, Guide to Infection Control in The Healthcare Setting Bloodstream Infection. International Society for Infectious Disease, 2018. 14. Dagnew, M., et al., Bacterial profile and antimicrobial susceptibility pattern in septicemia suspected patients attending Gondar University Hospital, Northwest Ethiopia. BMC Research Notes, 2013. 6(1): p. 283. 15. Centers for Disease Control, M.o.H.a.W., R.O.C.(Taiwan), Statistics of Communicable Diseases and Surveillance Report 2018. 2019, Centers for Disease Control, Ministry of Health and Welfare, R.O.C.(Taiwan). 16. Centers for Disease Control, D.o.H., R. O. C. (Taiwan), Statistics of Communicable Diseases and Surveillance Report 2009. 2010. 17. Tabak, Y.P., et al., Blood Culture Turnaround Time in U.S. Acute Care Hospitals and Implications for Laboratory Process Optimization. Journal of Clinical Microbiology, 2018. 56(12): p. e00500-18. 18. Thomson, R.B. and E. McElvania, Blood Culture Results Reporting: How Fast Is Your Laboratory and Is Faster Better? Journal of Clinical Microbiology, 2018. 56(12): p. e01313-18. 19. Cendejas-Bueno, E., M.P. Romero-Gómez, and J. Mingorance, The challenge of molecular diagnosis of bloodstream infections. World Journal of Microbiology and Biotechnology, 2019. 35(4): p. 65. 20. Coulter, S., et al., The Use of Bloodstream Infection Mortality to Measure the Impact of Antimicrobial Stewardship Interventions: Assessing the Evidence. Infectious disease reports, 2017. 9(1): p. 6849-6849. 21. Retamar, P., et al., Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrobial agents and chemotherapy, 2012. 56(1): p. 472-478. 22. Ayala Solares, J.R., et al., Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of Biomedical Informatics, 2020. 101: p. 103337. 23. Gangwar, P.S. and Y. Hasija, Deep Learning for Analysis of Electronic Health Records (EHR), in Deep Learning Techniques for Biomedical and Health Informatics, S. Dash, et al., Editors. 2020, Springer International Publishing: Cham. p. 149-166. 24. Rajkomar, A., et al., Scalable and accurate deep learning with electronic health records. npj Digital Medicine, 2018. 1(1): p. 18. 25. Betancur, J., et al., Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT. JACC: Cardiovascular Imaging, 2018. 11(11): p. 1654. 26. Warren, D.K., et al., Nosocomial Primary Bloodstream Infections in Intensive Care Unit Patients in a Nonteaching Community Medical Center: A 21-Month Prospective Study. Clinical Infectious Diseases, 2001. 33(8): p. 1329-1335. 27. Zhang, Y., et al. LSTM for septic shock: Adding unreliable labels to reliable predictions. in 2017 IEEE International Conference on Big Data (Big Data). 2017. 28. Hochreiter, S. and J. Schmidhuber, Long Short-term Memory. Neural computation, 1997. 9: p. 1735-80. 29. Fagerström, J., et al., LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Scientific Reports, 2019. 9(1): p. 15132. 30. Lauritsen, S.M., et al., Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artificial Intelligence in Medicine, 2020. 104: p. 101820. 31. Pepin, C.S., et al., Risk Factors for Central-Line–Associated Bloodstream Infections: A Focus on Comorbid Conditions. Infection Control Hospital Epidemiology, 2015. 36(4): p. 479-481. 32. Charlson, M.E., et al., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis, 1987. 40(5): p. 373-83. 33. Sundararajan, V., et al., New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol, 2004. 57(12): p. 1288-94. 34. Vaquero-Herrero, M.P., et al., The Pitt Bacteremia Score, Charlson Comorbidity Index and Chronic Disease Score are useful tools for the prediction of mortality in patients with Candida bloodstream infection. Mycoses, 2017. 60(10): p. 676-685. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16268 | - |
dc.description.abstract | 血流感染在各年齡層中都展現了高致病率以及高死亡率的特性,尤其對於免疫系統受損的病人,血流感染可能會演變為危及病人生命的侵襲性感染症,例如念珠菌血症以及敗血症,並且對於住院天數、醫療成本以及死亡率的增加都有重大影響。根據國際感染病學會(International Society of Infection Disease)的定義,血流感染意指血液培養呈現一種或多種病原體陽性反應,伴隨全身性感染跡象,例如發燒、寒顫以及/或低血壓。全球每年約有三千萬個病人發生血流感染,其中約有六百萬位病人因此死亡,以及約三百萬個新生兒和約一百二十萬個兒童轉變為敗血症。然而,現行的診斷方法有諸多限制,以當今的參考標準:血液培養為例,其檢驗時程較長,且針對特定病原菌,例如念珠菌,其敏感度並不理想。相較之下,新興的檢驗技術,例如聚合酵素連鎖反應(Polymerase Chain Reaction),雖能有效降低檢驗時程且提高敏感度,但因缺乏標準的作業流程以及容易受到污染等原因,至今仍無法完全取代血液培養作為臨床標準。較長的檢驗時程可能導致延遲治療,進而使得病人的預後惡化,但目前常見的經驗性治療經常導致藥物的過度使用。若能儘早偵測甚至鑑別病原並且準確用藥,則能有效地改善宿主病況。
今日許多醫學研究結合電子病歷以及深度學習,都得到良好的結果。本研究以 2009 年 04 月 13 日至 2017 年 12 月 31 日為研究區間,針對台大醫院住院病人血液培養陽性者,搜集其電子病歷資料,建構出一個長短期記憶網路(Long-Short Term Memory)預測模型。利用病人的基本資料、住院資料、醫療處置(包含手術記錄、用藥紀錄等)以及檢驗資料等作為輸入值,此模型將輸出一個風險預測值,若預測值高於設定的門檻值,則發出血流感染的警訊,可作為醫師是否要提早介入的參考依據。其中,不進行特徵選取(Feature Selection)所建構出之長短期記憶網路模型,搭配相同設定的風險門檻,其敏感度以及陽性預測值最高,分別來到84.87%以及85.02%,在臨床可接受範圍內,是最佳的預測模型。此研究的主要貢獻為針對細菌血症以及念珠菌血症病人,應用深度學習建構感染預警預測模型。 | zh_TW |
dc.description.abstract | Bloodstream infections (BSI) exhibit high morbidity and mortality in people of all ages, especially in patients with the compromised immune system. BSI may evolve into invasive infections that threaten the lives of patients, for instance, candidemia and sepsis, and it has a significant impact on the length of hospitalization, medical cost, and mortality as well. According to the International Society of Infection Disease, BSI is defined as “one or more positive blood cultures associated with systemic signs of infection such as fevers, chills and/or hypotension.” In worldwide, BSI affects approximately 30 million people and leads to 6 million deaths, with around 3 million newborns and 1.2 million children suffering from sepsis annually. The current diagnostic techniques have many limitations. Taking the current reference standard: blood culture, as an example, the turnaround time is slow, and the sensitivity to specific pathogens, such as Candida, is not ideal. In contrast, emerging techniques such as polymerase chain reaction (PCR) has faster turnaround time and higher sensitivity, but due to the lack of universal protocol and susceptibility to contamination and other characteristics, it cannot completely replace blood culture as a clinical standard so far. However, slow turnaround time may lead to delayed treatment, which in turn worsens the patient’s prognosis, but empirical treatments often lead to overuse of drugs. If the pathogens can be detected and even identified in the early stage, in cooperation with the customization of antibiotic therapy, it might benefit patients in several aspects, furthermore, improve patients’ outcomes.
Today, many medical research projects have combined electronic medical records and deep learning techniques, and most of which have achieved fairly good performances. In this study, we collect the electronic medical records of inpatients from April 13th, 2009 to December 31st, 2017 in National Taiwan University Hospital, of which with positive blood culture results. We construct a long-short term memory prediction model, which utilizes patients’ demographic data, hospitalization data, medical order records (including surgical records, medication records, etc.), lab data, etc. as input, and the model will output a risk score accordingly. If the risk score is higher than the set threshold, it will issue a warning sign of BSI, which could be a reference for physicians to determine whether to intervene or not. The most outperforming model is constructed without prior feature selection under the same sets of risk thresholds, which has the highest sensitivity (84.87%) and positive predictive value (85.02%) and are in the clinically acceptable range. The main contribution of this study is to use deep learning techniques to construct the infection warning prediction models for BSI patients, including bacteremia and candidemia. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:07:28Z (GMT). No. of bitstreams: 1 U0001-3007202011095700.pdf: 1849729 bytes, checksum: 13fbe72a4020c52e8692744a52d96ba6 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Contents vii List of Figures ix List of Tables x List of Appendixes xi Chapter 1 Introduction 1 1.1 Epidemiology of Bloodstream Infection 1 1.2 Diagnostic Tests for Bloodstream Infection 2 1.3 The Study Objective 3 1.4 Related Work 4 Chapter 2 Material and Methods 7 2.1 Hospital Setting 7 2.2 Data Collection and Preprocessing 7 2.2.1 Case Definitions 8 2.2.2 Clinical Features Definitions 11 2.2.3 Data Normalization and Missing Value Handling 19 2.2.4 Label Definitions 21 2.3 Workflow 22 2.4 Building Models 24 2.5 Evaluation Metrics 27 Chapter 3 Results 28 3.1 With Prior Feature Selection 31 3.2 Without Prior Feature Selection 32 Chapter 4 Discussion 34 4.1 Principal Results 34 4.2 Limitations 35 Chapter 5 Conclusion and Future Work 37 5.1 Conclusion 37 5.2 Future Work 37 References 38 Appendixes 41 | |
dc.language.iso | en | |
dc.title | 應用深度學習於感染預警預測模型之建構 | zh_TW |
dc.title | Development of Infection Warning Predicting Model Using Deep Learning | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳宜君(Yee-Chun Chen) | |
dc.contributor.oralexamcommittee | 李妮鍾(Ni-Chung Lee),郭律成(Lu-Cheng Kuo),曾意儒(Yi-Ju Tseng) | |
dc.subject.keyword | 血流感染,預測模型,念珠菌血症,細菌血症,長短期記憶網路,深度學習, | zh_TW |
dc.subject.keyword | Bloodstream Infection,Prediction Model,Candidemia,Bacteremia,Long-Short Term Memory,Deep Learning, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU202002079 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-03 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-3007202011095700.pdf 目前未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。