Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任立中(Li-Chung Jen)
dc.contributor.authorWen-Chi Changen
dc.contributor.author張紋綺zh_TW
dc.date.accessioned2021-06-07T18:06:49Z-
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-07-24
dc.identifier.citation中文部分:
1. 任立中,”行銷源典:任意行銷首部曲”,前程文化,2010
2. 任立中,”行銷資料庫的建構”,國立台灣大學國際企業研究所資料庫行銷研究上課講義,2005
3. 任立中、陳靜怡,”顧客價值遷徙路徑分析:馬可夫鏈模型”,96年台大管理論叢第17卷第二期,P.133-158
4. 呂玉敏,”應用雙變量層級貝式模型於顧客價值分析-以購物網站為例”,國立台灣大學商學研究所碩士論文,2005
5. 宋家寬,”應用貝式模式、馬可夫鏈於顧客轉移模型之分析”,國立台灣大學國際企業研究所碩士論文,2003
6. 林玉青,”應用雙變量層級貝式模型於顧客價值與行為穩定性之分析”,國立台灣大學國際企業研究所碩士論文,2003
7. 邵功新,”資料庫行銷之客製化新產品推薦系統”,國立台灣大學國際企業研究所碩士論文,2003
8. 洪雨平,”運用RFM模型與馬可夫鏈於顧客價值分析之研究”,國立台灣大學商學研究所碩士論文”,2002
9. 許毓麟,”層級貝式購物籃分析模型之研究”,國立台灣大學國際企業研究所碩士論文”,2005
10. 陳白瑛,”資料庫行銷之顧客價值分析:以直銷公司之顧客會員為例”,國立台灣大學商學研究所碩士論文,2005
11. 經濟部商業司,”2011我國B2C電子商店調查報告”,2011.12.20
12. 薛淳文,”利用購物籃分析探究超市會員之購買行為”,國立台灣大學國際企業研究所碩士論文,2011
英文部分:
1. Adrian Payne and Pennie Frow (2005), “A Strategic Framework for Customer Relationship Management”, Journal of Marketing, 69(11), pp.167-176.
2. Berry, Leonard L. (1983),”Relationship Marketing in Emerging Perspectives on Services Marketing”, Chicago: American Marketing Association, pp.25-29.
3. Berry ,Leonard L. (1995),” Relationship marketing of services—growing interest, emerging perspectives”, Journal of the Academy of Marketing Science, Volume 23, Number 4 , pp.236-245.
4. Berry, Leonard L. and A. Parasuraman (1999), ”Marketing Services-Competing Through Quality”, New York: The Free Press.
5. Christopher, M., Payne A., and Ballantyne D. (1991), “Relationship Marketing-Bringing Quality, in Customer Service and Marketing Together,” Butterwort h-Heinemann Ltd.
6. Don Peppers, Martha Rogers, and Bob Dorf (1999),” Is Your Company Ready For One-to-One Marketing?”, Harvard Business Review, pp.151-160.
7. Dwyer, F. Robert and Paul H. Schurr and Sejo Oh,(1987) , “Developing buyer-seller relationships”. Journal of Marketing, New York, Vol. 51, Issue: 2, pp.11-228.
8. Evans, J.R. & R.L. Laskin (1994), “The Relationship Marketing Process: A Conceptualization and Application”. Industrial Marketing Management, 23(5), pp.439-452.
9. F. Buttle (1996),”Relationship Marketing:theory and practice”.
10. Ganti, V.(1999),” Mining very large databases”, Computer, Volume: 32 , Issue: 8, pp.38-45.
11. Gronroos, Christian (1999),”Relationship Approach to Marketing in Service Con-texts: The Marketing and Organizational Behavior Interface”, Journal Of Business Research, New York, Vol.20, Issue: 1, pp.3-12.
12. Kotler, Philip (1998),”Marketing Management: Analysis, planning, implementation, andcontrol”,9th ed., Englewood Cliffs, NJ: Prentice-Hall.
13. L. Cavique (2007), “A Scalable Algorithm for the Market Basket Analysis”, Journal of Retailing and Consumer Services, 14(6), pp.400–407.
14. Lovelock (1999),” Developing Marketing Strategies For Transnational Service Operations”, Journal of Services Marketing, Vol. 13, No. 4/5, pp. 278 289.
15. Michael J.A. Berry, Gordon S. Linoff,”Data Mining Techniques-for Marketing, Sales, and Customer Relationship Management”, 3th ed., NJ: Wiley Publishing, Inc.
16. Morgan, R. M. and Hunt, S. D. (1994), “The Commitment-Trust Theory of Relationship Marketing,” Journal of Marketing, Vol.58, pp.20-38.
17. Robert A. Peterson (1995),” Relationship marketing and the consumer”, Business and Economics, Volume 23, Number 4 , pp.278-281
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16252-
dc.description.abstract資訊的發展使顧客可以透過網站快速的比較廠商及產品資訊,同時,網路也促成顧客之間的溝通更為頻繁,要如何善用資訊以培植企業與顧客的長久關係成為企業不應忽視的問題。近年來,推薦系統的發展不僅成為許多研究學者鑽研的目標,也引起業界不同應用領域的興趣與關注,然而多數企業在建置推薦系統時仍缺乏相關之技術及資源。故本研究試圖以簡單但科學的方法來建立產品推薦系統,以作為企業可以參考之依據。
本研究主要以購物籃的概念為基礎,以顧客過去的購買紀錄作為研究的依據,將分析主體劃分為三個部分,包括對整體顧客之分析、對分群顧客之分析以及對個別顧客之分析。分析方法主要有二:條件機率矩陣及層級貝氏Probit模型。本研究欲透過這兩種分析的方法以篩選出各種購物籃作為企業可向各類顧客推薦之產品組合,以建立顧客對企業之信賴,進而提升顧客關係。
研究結果不僅可以顯示出消費者在購買決策所呈現之各類產品之相關性,亦可分析產品之回購率進而作為企業推薦之依據。另一方面,結果顯示以層級貝式Probit模型之擊中率高於在無任何資訊下以平均機率之概念為基礎之擊中率。
zh_TW
dc.description.abstractThe development of information enable customers to compare rapidly and communicate more frequently through the website. Due to the innovation of information technology, the enterprises have to respect an issue that how to use the information to cultivate the relationship between enterprises and customers. Recently, the development of the recommendation system has not only become the research target of professors also attract the concern of practice. However, most of enterprises build the recommendation system without sufficient technology and resources. Therefore, this article will construct the recommendation system with simple and scientific methods and as the reference system to enterprises.
This article will adopt the concept of market basket analysis base on the trading records of customers, and we will focus on the analysis of aggregated customers, group customers, and individuals with the conditional probability matrix and Hierarchical Bayesian Probit model. We will use the analysis to filter out various market baskets as the recommended products to the different customers.
The result can show not only the correlation between different products, but also the re-purchase rate of products. On the other hand, we find that the hitting rate of Hierarchical Bayesian Probit model is higher than the hitting rate of the average probability without any information.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:06:49Z (GMT). No. of bitstreams: 1
ntu-101-R99724024-1.pdf: 1075451 bytes, checksum: 109bdbd4c1b8610e9643fc709613661b (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 4
1.3 論文架構 6
1.4 研究流程 7
第二章 文獻探討 8
2.1 顧客關係管理(Customer Relationship Management; CRM) 9
2.2 關係行銷(Relationship Marketing) 12
2.3 一對一行銷(One to One Marketing) 15
2.4購物籃分析(Market Basket Analysis; MBA) 17
2.4.1 購物籃分析定義 17
2.4.2購物籃分析之規則 19
2.4.3購物籃分析之優缺點 20
2.5 推薦系統(Recommender System; RS) 21
2.5.1 推薦系統之定義 21
2.5.2 推薦系統之分類 22
2.5.3 各分類推薦系統之優缺點 23
2.6 總結 24
第三章 研究方法 25
3.1 研究架構 25
3.2 RFM模型 26
3.2.1 RFM模型之定義 26
3.2.2 RFM指標分數之建立 28
3.4 關聯規則(Association Rule) 29
3.4.1關聯規則之定義 29
3.4.2 建立關聯規則 30
3.5 Probit模型 33
第四章 實證分析 42
4.1 資料介紹 42
4.1.1 樣本選擇 42
4.1.2 樣本描述 45
4.1.3 產品種類與購買次數 48
4.1.4會員購買次數與金額 49
4.2 RFM模型 50
4.2.1 顧客分群 50
4.2.2 計算各分群之顧客數 52
4.3 關聯分析 54
4.3.1 建立條件機率矩陣 54
4.3.2 整體顧客之條件機率移轉矩陣 57
4.3.3 分群顧客之條件機率移轉矩陣 59
4.4 層級貝式Probit模型分析 64
4.4.1 資料定義 64
4.4.3 資料整理 65
4.4.4 層級貝氏Probit模型之產品推薦 68
第五章 結論與建議 73
5.1 研究結論 73
5.2策略意涵 73
5.3研究限制 76
5.4後續研究建議 78
參考資料 79
dc.language.isozh-TW
dc.subjectProbit模型zh_TW
dc.subject層級貝式zh_TW
dc.subject關聯分析zh_TW
dc.subject購物籃分析zh_TW
dc.subjectProbit Modelen
dc.subjectMarket Basket Analysisen
dc.subjectHierarchical Bayesen
dc.subjectAssociation Analysisen
dc.title運用購物籃分析建立產品推薦系統zh_TW
dc.titleApplying Market Basket Analysis for Recommendation Systemen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳靜怡
dc.subject.keyword購物籃分析,關聯分析,層級貝式,Probit模型,zh_TW
dc.subject.keywordMarket Basket Analysis,Association Analysis,Hierarchical Bayes,Probit Model,en
dc.relation.page81
dc.rights.note未授權
dc.date.accepted2012-07-24
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved