請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游景雲(Gene Jiing-Yun YOU) | |
| dc.contributor.author | Yu-Chang Chen | en |
| dc.contributor.author | 陳昱璋 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:05:41Z | - |
| dc.date.copyright | 2020-08-06 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-30 | |
| dc.identifier.citation | 1. Bates, P. D., Anderson, M. G. (1993). A two-dimensional finite-element model for river flow inundation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 440(1909), 481-491. 2. Bellos, V., Tsakiris, G. (2015). Comparing various methods of building representation for 2D flood modelling in built-up areas. Water Resources Management, 29(2), 379-397. 3. Betsholtz, A., Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modelling in HEC-RAS. TVVR17/5003. 4. Brown, J. D., Spencer, T., Moeller, I. (2007). Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resources Research, 43(6). 5. Brunner, G. W. (2016). HEC-RAS River Analysis System, 2D Hydraulic reference manual, Version 5.0. Institute for water resources, Hydrological engineering center. 6. Casulli, V. (2009). A high‐resolution wetting and drying algorithm for free‐surface hydrodynamics. International Journal for Numerical Methods in Fluids, 60(4), 391-408. 7. Cea, L., Garrido, M., Puertas, J. (2010). Experimental validation of two-dimensional depth-averaged models for forecasting rainfall–runoff from precipitation data in urban areas. Journal of Hydrology, 382(1-4), 88-102. 8. Connell, R. J., Painter, D. J., Beffa, C. (2001). Two-dimensional flood plain flow. II: Model validation. Journal of hydrologic engineering, 6(5), 406-415. 9. Crossley, A. J., Wright, N. G., Whitlow, C. D. (2003). Local time stepping for modeling open channel flows. Journal of Hydraulic Engineering, 129(6), 455-462. 10. Cunge, J. (1980). Practical aspects of computational river hydraulics. Pitman Publishing Ltd. London, (17 CUN), 1980, 420. 11. Cunge, J. A. (1969). On the subject of a flood propagation computation method (Musklngum method). Journal of Hydraulic Research, 7(2), 205-230. 12. Di Giammarco, P., Todini, E., Lamberti, P. (1996). A conservative finite elements approach to overland flow: the control volume finite element formulation. Journal of Hydrology, 175(1-4), 267-291. 13. Dottori, F., Di Baldassarre, G., Todini, E. (2013). Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling. Water Resources Research, 49(9), 6079-6085. 14. Downer, C. W., Johnson, B. E., Ogden, F. L., Meselhe, E. A. (2000). Advances in physically based hydrologic modeling with CASC2D. In Watershed Management and Operations Management 2000 (pp. 1-10). 15. Downer, C. W., Nelson, E. J., Byrd, A. (2003). Primer: Using Watershed Modeling System (Wms) for Gridded Surface Subsurface Hydrologic Analysis (GSSHA) Data Development-Wms 6.1 and GSSHA 1.43 C (No. ERDC/CHL-TR-03-2). ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS COASTAL AND HYDRAULICSLAB. 16. Downer, C. W., Ogden, F. L., Martin, W. D., Harmon, R. S. (2002). Theory, development, and applicability of the surface water hydrologic model CASC2D. Hydrological processes, 16(2), 255-275. 17. Dulhoste, J. F., Georges, D., Besançon, G. (2004). Nonlinear control of open-channel water flow based on collocation control model. Journal of Hydraulic Engineering, 130(3), 254-266. 18. Fan, Y., Ao, T., Yu, H., Huang, G., Li, X. (2017). A coupled 1D-2D hydrodynamic model for urban flood inundation. Advances in Meteorology, 2017. 19. Henderson, F. M., Flow, O. C. (1966). Macmillan Company. New York. 20. Hunter, N. M., Bates, P. D., Horritt, M. S., Wilson, M. D. (2007). Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology, 90(3-4), 208-225. 21. Ishigaki, T. (2004). Hydraulic model tests and calculation of flood in urban area with underground space. In Proc. of 14th Congress of APD-IAHR, Hong Kong, 2004 (Vol. 2, pp. 1411-1416). 22. Kim, B., Sanders, B. F., Famiglietti, J. S., Guinot, V. (2015). Urban flood modeling with porous shallow-water equations: A case study of model errors in the presence of anisotropic porosity. Journal of Hydrology, 523, 680-692. 23. Kim, H. J., Lee, J. W., Yoon, K. S., Cho, Y. S. (2012). Numerical analysis of flood risk change due to obstruction. KSCE Journal of Civil Engineering, 16(2), 207-214. 24. Kuiry, S. N., Sen, D., Bates, P. D. (2010). Coupled 1D–Quasi-2D flood inundation model with unstructured grids. Journal of Hydraulic Engineering, 136(8), 493-506. 25. Lackey, T. C., Sotiropoulos, F. (2005). Role of artificial dissipation scaling and multigrid acceleration in numerical solutions of the depth-averaged free-surface flow equations. Journal of Hydraulic engineering, 131(6), 476-487. 26. Lal, A. W. (1998). Performance comparison of overland flow algorithms. Journal of Hydraulic Engineering, 124(4), 342-349. 27. Lamb, R., Crossley, M., Waller, S. (2009, December). A fast two-dimensional floodplain inundation model. In Proceedings of the institution of civil engineers-water management (Vol. 162, No. 6, pp. 363-370). Thomas Telford Ltd. 28. Lamb, R. O. B. E. R. T., Mantz, P. E. T. E. R., ATABAY, S., BENN, J., PEPPER, A. (2006). Recent advances in modelling flood water levels at bridges and culverts. In Proceedings of 41st Defra Flood and Coastal Risk Management Conference (pp. 4-6). 29. Lea, D., Yeonsu, K., Hyunuk, A. (2019). Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water, 11(10), 2048. 30. Leandro, J., Chen, A. S., Djordjević, S., Savić, D. A. (2009). Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of hydraulic engineering, 135(6), 495-504. 31. Li, Z., Liu, J., Mei, C., Shao, W., Wang, H., Yan, D. (2019). Comparative Analysis of Building Representations in TELEMAC-2D for Flood Inundation in Idealized Urban Districts. Water, 11(9), 1840. 32. Lighthill, M. J., Whitham, G. B. (1955). On kinematic waves I. Flood movement in long rivers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 281-316. 33. Meselhe, E. A., Holly Jr, F. M. (1997). Invalidity of Preissmann scheme for transcritical flow. Journal of Hydraulic Engineering, 123(7), 652-655. 34. Mignot, E., Paquier, A., Ishigaki, T. (2006). Comparison of numerical and experimental simulations of a flood in a dense urban area. Water science and technology, 54(6-7), 65-73. 35. Mignot, E., Zeng, C., Dominguez, G., Li, C. W., Rivière, N., Bazin, P. H. (2013). Impact of topographic obstacles on the discharge distribution in open-channel bifurcations. Journal of Hydrology, 494, 10-19. 36. Morris, E. M., Woolhiser, D. A. (1980). Unsteady one‐dimensional flow over a plane: Partial equilibrium and recession hydrographs. Water Resources Research, 16(2), 355-360. 37. Overton, D. E., Brakensiek, D. L. (1970). A KINEMATIC MODEL OP SURFACE RUNOFF RESPONSE: “. 38. Paz, A. R., Meller, A., Silva, G. B. L. (2011, September). Coupled 1D-2D hydraulic simulation of urban drainage systems: model development and preliminary results. In Proceedings of the 12nd International Conference on Urban Drainage. 39. Pistrika, A., Tsakiris, G., Nalbantis, I. (2014). Flood depth-damage functions for built environment. Environmental Processes, 1(4), 553-572. 40. Ponce, V. M. (1989). Engineering hydrology: Principles and practices (Vol. 640). Englewood Cliffs, NJ: Prentice Hall. 41. Reinfelds, I., Cohen, T., Batten, P., Brierley, G. (2004). Assessment of downstream trends in channel gradient, total and specific stream power: a GIS approach. Geomorphology, 60(3-4), 403-416. 42. Russo, B., Suñer, D., Velasco, M., Djordjević, S. (2012). Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model. In Proceedings of 9th International Conference on Urban Drainage Modelling, Belgrade, Serbia: Faculty of Civil Engineering, University of Belgrade. 43. Seyoum, S. D., Vojinovic, Z., Price, R. K., Weesakul, S. (2012). Coupled 1D and noninertia 2D flood inundation model for simulation of urban flooding. Journal of Hydraulic Engineering, 138(1), 23-34. 44. Soares-Frazão, S., Zech, Y. (2007). Experimental study of dam-break flow against an isolated obstacle. Journal of Hydraulic Research, 45(sup1), 27-36. 45. Soares-Frazão, S., Zech, Y. (2008). Dam-break flow through an idealised city. Journal of Hydraulic Research, 46(5), 648-658. 46. Sorooshian, S., Hsu, K. L., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G. (Eds.). (2008). Hydrological modelling and the water cycle: coupling the atmospheric and hydrological models (Vol. 63). Springer Science Business Media. 47. Stephenson, D., Meadows, M. E. (1986). Kinematic hydrology and modelling. Developments in water science, (26). 48. Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling Software, 90, 201-216. 49. Testa, G., Zuccalà, D., Alcrudo, F., Mulet, J., Soares-Frazão, S. (2007). Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 45(sup1), 37-44. 50. Tsakiris, G. (2014). Flood risk assessment: concepts, modelling, applications. Natural Hazards and Earth System Sciences, 14(5), 1361. 51. Vojinovic, Z. (2009). Supporting flood disaster management with numerical modelling and spatial mapping tools. International Journal of Geoinformatics, 5(4), 33. 52. Vojinovic, Z., Seyoum, S. D., Mwalwaka, J. M., Price, R. K. (2011). Effects of model schematisation, geometry and parameter values on urban flood modelling. Water Science and Technology, 63(3), 462-467. 53. Woolhiser, D. A., Liggett, J. A. (1967). Unsteady, one‐dimensional flow over a plane—The rising hydrograph. Water Resources Research, 3(3), 753-771. 54. Yang, L., Smith, J. A., Baeck, M. L., Zhang, Y. (2016). Flash flooding in small urban watersheds: Storm event hydrologic response. Water Resources Research, 52(6), 4571-4589. 55. Ying, X., Khan, A. A., Wang, S. S. (2004). Upwind conservative scheme for the Saint Venant equations. Journal of hydraulic engineering, 130(10), 977-987. 56. Zerger, A., Wealands, S. (2004). Beyond modelling: linking models with GIS for flood risk management. Natural Hazards, 33(2), 191-208. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16223 | - |
| dc.description.abstract | 近年來,由於頻繁的強降雨事件以及都市化的快速進程,都市淹水災害已成為一個重要的問題。對於都市淹水而言,雨水的排放在淹水分析中至關重要,包括地表水流的集中和下水道系統中的運輸。然而,在過去的研究中,特別是在建築物結構的影響下,地表水流的集中並沒有得到很好的檢驗。過去因為都市地表徑流計算困難,在計算時需要消耗很長的時間。近年來,因為電腦設備的進步,二維水力模型已成為都市漫地流規劃和管理的重要工具。在本研究中,我們比較了兩種基於網格單元的水力數值模型。因此,我們可以透過模型對都市地區的地表漫地流流態有更好的瞭解。第一個模型是GSSHA,這是一個基於物理的分佈式模型,它以擴散波方程作為控制方程來進行數值模擬。第二種是HEC-RAS,它能使用擴散波方程和動力波動量方程來預測洪水過程的進展。利用這兩個水力模型,本研究主要探討流域形狀和建築物在洪水期間對水流流動的影響,以及它們是否為影響都市地區排水系統的重要因素。 | zh_TW |
| dc.description.abstract | Recently, urban flooding has become an important issue due to frequent heavy rainfall events and rapid urbanization. For urban flooding, the drainage of stormwater is essential in inundation analysis, including the concentration of overland flow and transportation in the sewer system. However, in the past, the concentration of overland flow has not been well examined, especially under the influence of building structures. In the past, the overland flow in the urban areas is hard to calculate and causing lots of computation time. Currently, two-dimensional hydraulic models become an important tool for flood planning and management. In this study, we compare two hydraulic numerical models based on grid cells. So, we can flow patterns of overland flow in the urban areas for better understanding. The first model is GSSHA, a physically-based, distributed model, which uses the diffusive wave equation as a governing equation to execute the numerical simulation. The second one is HEC-RAS, which uses either the diffusive wave or the full dynamic wave momentum equation to predict the progression of a flood hydrograph. With these two hydraulic models, this study focuses on how the geometry of the catchment shape and the constructions affect the water flow during the flood and whether they can be an important factor to influence the drainage system in the urbanized areas. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:05:41Z (GMT). No. of bitstreams: 1 U0001-3007202011463600.pdf: 3722418 bytes, checksum: 16369a59bbd600aaaf626b80f349cffb (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | CONTENTS 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Review of One- and Two-dimensional Models 4 2.2 Flood Wave Propagation 8 2.3 Impact of Buildings in Overland Flow 10 Chapter 3 Methodology 12 3.1 Framework 12 3.2 Model: GSSHA 13 3.2.1 Process Simulated 15 3.2.2 Surface-Water Routing 16 3.3 Model: HEC-RAS 21 3.3.1 Assumptions 21 3.3.2 Flood Inundation Modeling 22 Chapter 4 Results and Discussions 30 4.1 V-shaped Catchment Experiment 30 4.2 Test of Rainfall Intensity 37 4.3 Examination of Geometry of Catchment Shape 40 4.4 The Effect of Building Structures 44 4.5 Case Study 51 4.5.1 Study Area and Dataset 51 4.5.2 Model application results 52 Chapter 5 Conclusions and Suggestions 55 5.1 Conclusions 55 5.2 Suggestions and Future work 56 Reference 58 | |
| dc.language.iso | en | |
| dc.subject | HEC-RAS | zh_TW |
| dc.subject | 降雨徑流模型 | zh_TW |
| dc.subject | 集水區幾何與建物的影響 | zh_TW |
| dc.subject | 二維水力模型 | zh_TW |
| dc.subject | GSSHA | zh_TW |
| dc.subject | 都市漫地流模擬 | zh_TW |
| dc.subject | GSSHA | en |
| dc.subject | two-dimensional hydraulic model | en |
| dc.subject | HEC-RAS | en |
| dc.subject | urban flooding simulation | en |
| dc.subject | the influence of buildings | en |
| dc.subject | geometry of catchment | en |
| dc.subject | rainfall-runoff model | en |
| dc.title | 集水區幾何與建物結構效應對都市漫地流的影響 | zh_TW |
| dc.title | Modelling Overland Flow in Urban Area with the Effect of Building Structures and Geometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施上粟(Shang-Shu Shih),江莉琦(Li-Chi Chiang),巫孟璇(Meng-Hsuan Wu) | |
| dc.subject.keyword | 都市漫地流模擬,二維水力模型,集水區幾何與建物的影響,降雨徑流模型,HEC-RAS,GSSHA, | zh_TW |
| dc.subject.keyword | urban flooding simulation,two-dimensional hydraulic model,the influence of buildings,geometry of catchment,rainfall-runoff model,HEC-RAS,GSSHA, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202002089 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202011463600.pdf 未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
