Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16221
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorChung-Yi Yangen
dc.contributor.author楊中宜zh_TW
dc.date.accessioned2021-06-07T18:05:37Z-
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citationReference
1. Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast media & molecular imaging. 2009;4(1):1-23.
2. Grobner T. Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2006;21(4):1104-8.
3. Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol. 2008;43(12):817-28.
4. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews. 2006;58(14):1471-504.
5. Aisen P, Wessling-Resnick M, Leibold EA. Iron metabolism. Current opinion in chemical biology. 1999;3(2):200-6.
6. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113-21.
7. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141-8.
8. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361(9351):45-6.
9. Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation. 2003;108(18):2212-8.
10. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106(15):1913-8.
11. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009-17.
12. Kaminski A, Steinhoff G. Current status of intramyocardial bone marrow stem cell transplantation. Semin Thorac Cardiovasc Surg. 2008;20(2):119-25.
13. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441(7097):1094-6.
14. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10 Suppl:S42-50.
15. Tsai CP, Hung Y, Chou YH, et al. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. Small. 2008;4(2):186-91.
16. Nakamura H, Ito N, Kotake F, Mizokami Y, Matsuoka T. Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma. J Gastroenterol. 2000;35(11):849-55.
17. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491-9.
18. Choi SJ, Oh JM, Choy JH. Human-related application and nanotoxicology of inorganic particles: complementary aspects. J Mater Chem. 2008;18(6):615-20.
19. van den Bos EJ, Wagner A, Mahrholdt H, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant. 2003;12(7):743-56.
20. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 2004;17(7):513-7.
21. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol. 2004;14(10):1851-8.
22. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR in biomedicine. 2004;17(7):484-99.
23. Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR Contrast Agents for Liver Imaging: What, When, How. 2006; p. 1621-36.
24. Pouliquen D, Le Jeune JJ, Perdrisot R, Ermias A, Jallet P. Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging. 1991;9(3):275-83.
25. Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003;13(6):1266-76.
26. Hsiao J-K, Tai M-F, Yang C-Y, et al. Comparison of Micrometer and Nanometer Sized Magnetic Particles for Cell Labeling. Magnetics, IEEE Transactions on. 2007;43(6):2421-3.
27. Kircher MF, Allport JR, Graves EE, et al. In Vivo High Resolution Three-Dimensional Imaging of Antigen-Specific Cytotoxic T-Lymphocyte Trafficking to Tumors Cancer Res. 2003;63(20):6838-46.
28. Yeh TC, Zhang W, Ildstad ST, Ho C. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med. 1993;30(5):617-25.
29. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Investigative radiology. 2004;39(1):56-63.
30. Hsiao JK, Tai MF, Lee YC, et al. Labeling of cultured macrophages with novel magnetic nanoparticles. J Magn Magn Mater. 2006;304(1):e4-e6.
31. Chang Y, Chen TL, Sheu JR, Chen RM. Suppressive effects of ketamine on macrophage functions. Toxicol Appl Pharmacol. 2005;204(1):27-35.
32. Kagan VE, Tyurina YY, Tyurin VA, et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett. 2006;165(1):88-100.
33. Huang DM, Hung Y, Ko BS, et al. Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J. 2005;19(14):2014-6.
34. Daldrup-Link HE, Rudelius M, Oostendorp RAJ, et al. Targeting of Hematopoietic Progenitor Cells with MR Contrast Agents. Radiology. 2003;228(3):760-7.
35. Hsiao J-K, Tai M-F, Chu H-H, et al. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: Cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magnetic Resonance in Medicine. 2007;58(4):717-24.
36. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed. 2006;19(5):581-92.
37. Huang DM, Hsiao JK, Chen YC, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials. 2009;30(22):3645-51.
38. Lunov O, Syrovets T, Buchele B, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010;31(19):5063-71.
39. Lunov O, Syrovets T, Rocker C, et al. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials. 2010;31(34):9015-22.
40. Arbab AS, Liu W, Frank JA. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices. 2006;3(4):427-39.
41. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484-99.
42. Yang CY, Hsiao JK, Tai MF, et al. Direct Labeling of hMSC with SPIO: the Long-Term Influence on Toxicity, Chondrogenic Differentiation Capacity, and Intracellular Distribution. Mol Imaging Biol. 2010.
43. Hsiao JK, Chu HH, Wang YH, et al. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 2008.
44. Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed. 2005;18(6):383-9.
45. Huth US, Schubert R, Peschka-Suss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Controlled Release. 2006;110(3):490-504.
46. Bishop NE. An Update on Non-clathrin-coated Endocytosis. Rev Med Virol. 1997;7(4):199-209.
47. Chen YC, Hsiao JK, Liu HM, et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol. 2010;245(2):272-9.
48. Marchetti P, Castedo M, Susin SA, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med. 1996;184(3):1155-60.
49. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175(2):489-93.
50. Turvey SE, Swart E, Denis MC, et al. Noninvasive imaging of pancreatic inflammation and its reversal in type 1 diabetes. J Clin Invest. 2005;115(9):2454-61.
51. Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A. 2004;101(34):12634-9.
52. Simon GH, Daldrup-Link HE, Kau J, et al. Optical imaging of experimental arthritis using allogeneic leukocytes labeled with a near-infrared fluorescent probe. Eur J Nucl Med Mol Imaging. 2006;33(9):998-1006.
53. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000;35(8):460-71.
54. Schmitz SA, Taupitz M, Wagner S, et al. Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol. 2002;37(7):405-11.
55. Dubey P, Su H, Adonai N, et al. Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A. 2003;100(3):1232-7.
56. Koehne G, Doubrovin M, Doubrovina E, et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol. 2003;21(4):405-13.
57. Valable S, Barbier EL, Bernaudin M, et al. In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma. Neuroimage. 2008;40(2):973-83.
58. de Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407-13.
59. Sista AK, Knebel RJ, Tavri S, et al. Optical imaging of the peri-tumoral inflammatory response in breast cancer. J Transl Med. 2009;7:94.
60. Bogdanov A, Jr., Matuszewski L, Bremer C, Petrovsky A, Weissleder R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging. 2002;1(1):16-23.
61. Rad AM, Janic B, Iskander AS, Soltanian-Zadeh H, Arbab AS. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. BioTechniques. 2007;43(5):627-8, 30, 32 passim.
62. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109-16.
63. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568-84.
64. Arbab AS, Bashaw LA, Miller BR, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229(3):838-46.
65. Yocum GT, Wilson LB, Ashari P, Jordan EK, Frank JA, Arbab AS. Effect of human stem cells labeled with ferumoxides-poly-L-lysine on hematologic and biochemical measurements in rats. Radiology. 2005;235(2):547-52.
66. Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003;228(2):480-7.
67. Frank JA, Zywicke H, Jordan EK, et al. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol. 2002;9 Suppl 2:S484-7.
68. Mailander V, Lorenz MR, Holzapfel V, et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol. 2008;10(3):138-46.
69. Hsiao JK, Tai MF, Chu HH, et al. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med. 2007;58(4):717-24.
70. Henning TD, Sutton EJ, Kim A, et al. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging. 2009;4(4):165-73.
71. Okamoto T, Aoyama T, Nakayama T, et al. Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun. 2002;295(2):354-61.
72. Lu CW, Hung Y, Hsiao JK, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 2007;7(1):149-54.
73. Hsiao JK, Tsai CP, Chung TH, et al. Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. Small. 2008;4(9):1445-52.
74. Pawelczyk E, Arbab AS, Pandit S, Hu E, Frank JA. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed. 2006;19(5):581-92.
75. Ogawa R, Mizuno H, Watanabe A, Migita M, Shimada T, Hyakusoku H. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun. 2004;313(4):871-7.
76. Miot S, Gianni-Barrera R, Pelttari K, et al. In vitro and in vivo validation of human and goat chondrocyte labeling by GFP lentivirus transduction. Tissue Eng Part C Methods. 2009.
77. Rosenberg L. Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Joint Surg Am. 1971;53(1):69-82.
78. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189-200.
79. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27(25):4434-42.
80. Arbab AS, Yocum GT, Wilson LB, et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging. 2004;3(1):24-32.
81. Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood. 2004;104(4):1217-23.
82. Oude Engberink RD, van der Pol SM, Dopp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology. 2007;243(2):467-74.
83. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.
84. Thomas ED, Lochte HL, Jr., Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491-6.
85. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91-7.
86. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579-92.
87. Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood. 2004;104(10):3410-2; author reply 2-3.
88. Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 2005;18(8):553-9.
89. Burtea C, Laurent S, Vander Elst L, Muller RN. Contrast agents: magnetic resonance. Handb Exp Pharmacol. 2008(185 Pt 1):135-65.
90. Delikatny EJ, Poptani H. MR techniques for in vivo molecular and cellular imaging. Radiol Clin North Am. 2005;43(1):205-20.
91. Hsiao JK, Tai MF, Yang CY, et al. Comparison of Micrometer and Nanometer Sized Magnetic Particles for Cell Labeling. Magnetics, IEEE Transactions on. 2007;43(6):2421-3.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16221-
dc.description.abstract在應用於磁振造影的對比劑當中,超順磁性氧化鐵奈米粒子(SPIO)是目前最常使用的超順磁性粒子,而釓(Gd)是目前最常用的順磁性粒子。巨噬細胞(macrophage)是一種具有吞噬能力(phagocytosis)的特殊細胞,因此會主動吞噬SPIO而在可在磁振造影中顯影。若要標示其他無吞噬能力的細胞(如幹細胞),為使標示效率提高及避免高濃度的培養所帶來的細胞毒性,大部份的研究會使用轉染試劑(transfection agent)來幫助標示,不過這個做法可能會帶來新的細胞毒性或對細胞功能產生影響。此論文中是在利用直接細胞標示方法下,氧化鐵奈米粒子在巨噬細胞及間質性幹細胞之標示效能、攝取機制與其對細胞生理功能影響之探討。
在巨噬細胞吞噬含氧化鐵奈米粒子(Ferucarbotran)的實驗中,我們在分光光譜儀及流式細胞儀分析的結果發現Ferucarbotran培養濃度與吞噬量及細胞顆粒性(granularity)成正相關。細胞內的鐵含量與側面散射特性呈現線性關係(p <0.001, R2 = 0. 8048)。在經過Ferucarbotran標示後,我們觀察到巨噬細胞在細胞活性與活性氧分子群的增加,及粒線體電位差的變化,這表示巨噬細胞的活性發生了變化。隨著顆粒的大小及特性不同,巨噬細胞會由不同的內噬路徑吞噬顆粒。了解巨噬細胞是經由何種內噬路徑吞噬SPIO,將有助於對比劑的發展及對細胞生理的了解。在添加不同的內噬路徑抑制劑後,我們在流式細胞儀及磁振造影影像的證據中發現在抑制Clathrin路徑後,培養於Ferucarbotran的巨噬細胞內的鐵含量相較之下大幅減小,由此可見巨噬細胞是經由Clathrin路徑來吞噬 Ferucarbotran。
由於間質幹細胞具有組織修補及器官移殖等細胞療法之用途,標示間質幹細胞的細胞影像可以在非侵入性的方式之下幫助我們了解細胞療法之成效。因此我們對於Ferucarbotran的標示對於間質幹細胞的毒性及細胞生理影響也很有興趣。在此篇論文中我們利用了光學顯微鏡、流式細胞儀分析在24小時及72小時使用直接標示Ferucarbotran的間質幹細胞,其細胞的巨觀型態,大小,繁殖數量,顆粒性,活性及活性氧分子群的產生均與控制組的細胞沒有顯著相關,而且其標示效率皆達到可被磁振造影偵測的程度。過去的文獻中已經知道間質幹細胞在直接標示Ferucarbotran後的骨骼以及脂肪組織分化能力依然存在,可是軟骨組織分化能力一直都還沒得到證實。在這個研究中,我們成功地讓直接標示後的間質幹細胞分化成軟骨組織,並以染色及組織細胞化學方法加以驗證。因此我們可以得到的結論是直接標示法在可被磁振造影偵測的特定濃度下不會對間質幹細胞的細胞活性及生理功能產生明顯的影響,也保留了間質幹細胞分化能力的完備性。我們也發現在間質幹細胞吸收Ferucarbotran之後,在螢光染色的資料證實這些氧化鐵奈米粒子分佈在溶小體中,這個結果與巨噬細胞吞噬Ferucarbotran後的結果相仿,也跟其他研究文獻的結果相符。在此論文中也比較使用含氧化鐵奈米粒子(Ferucarbotran)與含釓(Gadodiamide)兩種臨床上使用中之對比劑在標示間質幹細胞時,測定其標示效率,靈敏度與磁 振造影偵測之可行性。我們發現在不影響細胞功能的濃度下,間質幹細胞可在沒有轉染試劑的幫助下成功地使用這兩種對比劑標示並於磁振造影中顯影。我們也分別測定了在磁振造影中體外能夠顯影之最少細胞數目量,這些閾值可供日後實驗設計或臨床運用之參考。在小動物實驗中,Ferucarbotran的磁振造影靈敏度可以達到Gadodiamide的八倍,不過因為磁敏感度(magnetic susceptibility)強,Ferucarbotran所產生之訊號可能會扭曲或遮蔽周圍的解剖構造。
這篇論文提供了將細胞直接標示超順磁性氧化鐵奈米粒子在磁振造影偵測可行性之論證。間質幹細胞的生理活性與分化功能在此論文提供的分法下直接標示後可以不受影響。而巨噬細胞在吞噬足以在磁振造影顯影的氧化鐵奈米粒子數量下,是經由Clathrin-mediated路徑,並會發生一些細胞生理上的變化。這些發現有助於幹細胞生物學,組織工程,細胞影像及細胞療法的研究及發展。
zh_TW
dc.description.abstractVarious magnetic resonance (MR) contrast agents, including paramagnetic and superparamagnetic substances, have been used for cell labeling in cellular imaging. Superparamagnetic iron oxide (SPIO) nanoparticles are the most commonly used superparamagnetic contrast agents used for magnetic resonance imaging while Gadolinium (Gd) is the most common clinically used paramagnetic contrast agents. Macrophages, one kind of specialized blood cells that are capable of phagocytosis, would ingest SPIOs and produces signals on MR imaging. To improve the labeling efficacy on non-phagocytotic cells, for example, stem cells, and to prevent the toxicity of high incubation concentration, most of the labeling were performed with the aids of various transfection agents, which may introduce to other cellular toxicity or influence of cellular function. Therefore direct labeling method without transfection agent is used in this thesis. The objectives of this thesis are to examine the impact of the direct SPIO labeling on macrophages and mesenchymal stem cells, especially the labeling efficacy, mechanism of cellular uptake and impact on cellular physiology.
The murine macrophage cell line Raw 264.7 and a clinical SPIO contrast agent (Ferucarbotran, carboxydextran-coated SPIO with a diameter of about 45–60 nm) were used in this thesis. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P <0.001, R2 = 0. 8048). For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. Significant decrease of side scattering counts and change in signal intensity on magnetic resonance image were observed only in the phenylarsine oxide-treated macrophages, which suggested the clathrin-mediated pathway plays a major role in the endocytosis of the Ferucarbotran. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species (ROS) at 2, 24, and 48 h; a decrease in mitochondrial membrane potential (MMP) at 24 h; and an increase in cell proliferation at 24 h. The results suggested an alteration of the cellular physiological function of the macrophage after direct labeling of Ferucarbotran.
This thesis also describes the evaluation the long-term cellular toxicity, labeling efficiency, chondrogenic differentiation capacity, and intracellular distribution following direct SPIO nanoparticle labeling of human MSCs (hMSCs) in the absence of transfection agents. hMSCs were incubated with Ferucarbotran at concentrations of 0, 1, 10, and 100 μg Fe/ml for 24 or 72 h. The cell granularity and size change, ROS generation, and MMP change were measured by flow cytometry. After induction of chondrogenesis, the differentiation capacity of the cells into chondrocytes was determined by Alcian blue and Safranin-O staining, immunocytochemical analysis, and RT-PCR. The intracellular distribution of the internalized particles was visualized via confocal microscopy. No significant difference was found in the toxicity of labeled cells relative to controls until the twelfth day. Successful chondrogenesis of Ferucarbotran-labeled hMSCs was confirmed. The intracellular SPIO nanoparticles were located within the lysosomes. This thesis also compared the efficacy, sensitivity and feasibility between paramagnetic and superparamagnetic substances labeling in hMSCs. We used Ferucarbotran and Gadodiamide (Gd chelate [Gd-DTPA-BMA]) for comparison. Without the aid of transfection agent, human mesenchymal stem cells were labeled with each agent separately in different concentration and the optimized concentration was determined by maintaining same cell viability as unlabeled cells. Iron oxide nanoparticle labeling has a detecting threshold of 12,500 cells in vitro, while gadolinium chelates labeling could be detected for at least 50,000 cells. In life animal study, there is an 8-fold sensitivity in cells labeled with iron oxide superparamagnetic nanoparticles; however, the magnetic susceptibility artifact would obscure the detail of adjacent anatomical structures.
In conclusion, the direct labeling method of SPIO on macrophages and hMSCs is feasible for cellular imaging. The alteration of ROS and MMP raised a concern of biosafety while SPIO labeling of macrophages. The cellular physiological functions of the labeled hMSCs were not altered in a long-term follow up and the chondrogenic differentiation capacity was preserved. The endocytotic mechanism of SPIO uptake into macrophage was via the clathrin-mediated pathway. Further development of nanoparticles targeting the clathrin may increase the efficiency of this cell labeling method. The minimum thresholds for MRI detection of SPIO and Gd were determined and there is an 8-fold sensitivity in cells labeled with SPIO compared to Gd labeling in the life animal study.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:05:37Z (GMT). No. of bitstreams: 1
ntu-101-D95548014-1.pdf: 3516984 bytes, checksum: 5b081dc9e1082f43e9884c7b4e3a4a95 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xiii
ABBREVIATION xiv
Chapter 1 Introduction 1
1.1 Magnetic Resonance Imaging 1
1.2 Magnetism 2
1.2.1 Diamagnetism 2
1.2.2 Paramagnetism 2
1.2.3 Ferromagnetism 3
1.2.4 Superparamagnetism 3
1.3 MRI Contrast Media 4
1.3.1 Gadolinium (Gd) 4
1.3.2 Iron Oxide 6
1.4 Cellular Magnetic Resonance Imaging 7
1.4.1 Macrophage Imaging 8
1.4.2 Non-phagocytic Cell Labeling 9
1.4.3 Biocompatibility 9
1.5 Thesis Organization 10
1.6 References 12
Chapter 2 Mechanism of Cellular Uptake and Impact of Ferucarbotran on Macrophage Physiology 14
2.1 Introduction 14
2.2 Materials and Methods 15
2.2.1 Cell culture 15
2.2.2 Flow cytometry detection of SPIO particle uptake 16
2.2.3 Iron content determination 16
2.2.4 Mitochondrial membrane potential determination 17
2.2.5 Reactive oxygen species determination 17
2.2.6 Cell viability assays 17
2.2.7 Magnetic resonance imaging 18
2.2.8 Statistical analysis 18
2.3 Results 19
2.3.1 SPIO uptake 19
2.3.2 Mechanism of uptake 20
2.3.3 Cellular behavior 22
2.4 Discussion 25
2.4.1 SPIO particle uptake 25
2.4.2 Mechanism of uptake 28
2.4.3 Cellular behavior 29
2.4.4 In vivo cell tracking 31
2.5 Limitations 32
2.6 Conclusions 33
2.7 References 35
Chapter 3 Direct Labeling of Human Mesenchymal Stem Cells with SPIO 38
3.1 Impact on differentiation capacity and cellular physiologic functions of mesenchymal stem cells after direct SPIO labeling 38
3.1.1 Introduction 38
3.1.2 Materials and methods 39
3.1.3 Results 44
3.1.4 Discussion 48
3.1.5 Conclusion 51
3.2 The Labeling Efficiency and Biocompatibility of Direct MR Contrast Agent Labeling on Mesenchymal Stem Cells 52
3.2.1 Introduction 52
3.2.2 Material and Method 53
3.2.3 Results and Discussion 54
3.2.4 Conclusion 61
3.3 References 62
Chapter 4 Conclusion and Future Plans 65
4.1 Impact of Direct Contrast Agent Labeling on Cellular Physiology 65
4.2 Mechanism of Cellular Uptake of SPIO 66
4.3 Efficacy of Direct MR Contrast Agent Labeling 66
4.4 Future Plans 66
4.5 Final Words 67
4.6 Reference 68
dc.language.isoen
dc.subject磁振造影zh_TW
dc.subject磁性奈米粒子zh_TW
dc.subject超順磁氧化鐵zh_TW
dc.subject幹細胞zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectmacrophageen
dc.subjectsuperparamagnetic iron oxideen
dc.subjectnanoparticleen
dc.subjectmagnetic resonance imagingen
dc.subjectstem cellsen
dc.title氧化鐵奈米粒子於巨噬細胞及幹細胞之標示:標示效能、攝取機制及細胞生理功能影響之探討zh_TW
dc.titleLabeling of Iron Oxide Nanoparticles on Macrophage and Mesenchymal Stem Cells: Study of Labeling Efficacy, Mechanism of Cellular Uptake and Impact on Cellular Physiologyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.coadvisor廖漢文(Hon-Man Liu)
dc.contributor.oralexamcommittee周必泰(Pi-Tai Chou),王先知(Shian-Jy Wang),黃東明(Dong-Ming Huang),蕭仲凱(Jong-Kai Hsiao)
dc.subject.keyword磁性奈米粒子,超順磁氧化鐵,幹細胞,巨噬細胞,磁振造影,zh_TW
dc.subject.keywordsuperparamagnetic iron oxide,nanoparticle,magnetic resonance imaging,stem cells,macrophage,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2012-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved