Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor汪根欉(Ken-Tsung Wong)
dc.contributor.authorHan Hanen
dc.contributor.author韓涵zh_TW
dc.date.accessioned2021-06-07T18:05:22Z-
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citation1 a) S. Moynihan, D. Iacopino, D. O’Carroll, P. Lovera, G. Redmond, Chem. Mater. 2008, 20, 996–1003; b) D. O’Carroll, G. Redmond, Chem. Mater. 2008, 20, 6501–6508.
2 a) D. O’Carroll, I. Lieberwirth, G. Redmond, Small 2007, 3, 1178–1183; b) Y. S. Zhao, J. Xu, A. Peng, H. Fu, Y. Ma, L. Jiang, J. Yao, Angew. Chem., Int. Ed. 2008, 47, 7301–7305.
3 a) J. Fresnais, E. Ishow, O. Sandre, J. F. Berret, Small 2009, 5, 2533–2536; b) J. Fresnais, J.-F. Berret, B. Frka-Petesic, O. Sandre, R. Perzynski, Adv. Mater. 2008, 20, 3877–3881.
4 a) K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, C. Coh, Y. Liu, M. D. McGehee, Adv. Funct. Mater. 2005, 15, 1927–1932; b) L. S. Van Dyke, C. R. Martin, Synth. Met. 1990, 36, 275–281; c) L. S. Van Dyke, C. R. Martin, Langmuir 1990, 6, 1118–1123.
5 a) B. O’Connor, K. H. An, Y. Zhao, K. P. Pipe, M. Shtein, Adv. Mater. 2007, 19, 3897–3900
b) H. Yang, C. R. Lightner, L. Dong, ACS Nano, 2012, 6, 622–628
6 N. I. Kovtyukhova, B. K. Kelley, T. E. Mallouk, J. Am. Chem. Soc. 2004, 126, 12738–12739.
7 a) H.-S. Wang, L.-H. Lin, S.-Y. Chen, Y.-L. Wang, K.-H. Wei, Nanotechnology 2009, 20, 075201; b) J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H. Park, J. K. Kim, K. Cho, Adv. Funct. Mater. 2010, 20, 540–545; c) X. He, F. Gao, G. Tu, D. Hasko, S. Huttner, U. Steiner, N. C. Greenham, R. H. Friend, W. T. S. Huck, Nano Letters 2010, 10, 1302–1307.
8 a) S.J. Hurst, E.K. Payne, L. Qin, and C.A. Mirkin, Angew. Chem. Int. Ed. 2006,45,2672–2692; b) L. Sun, P. C. Searson, C. L. Chien, Appl. Phys. Lett. 1999, 74, 2803–2805; c) R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, Science 1992, 258, 783–785; d) C. G. Wu, T. Bein, Science 1994, 264, 1757–1759; e) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz,; C. T. Kresge, K. D. Schmitt, C. T. W.Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834–10843; f) G. A. Ozin, Adv. Mater. 1992, 4, 612–649; g) T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krustin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, Science 2000, 290, 2126–2129; h) T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, M. Bal, M. Tuominen, C. J. Hawker, T. P. Russell, Adv. Mater. 2000, 12, 787–791; i) Poretics Corporation, Livermore, CA, Product Guide,1995; j) H. Masuda, K. Fukuda, Science 1995, 268, 1466–1468.
9 a) R. O. Al-Kaysi, R. J. Dillon, J. M. Kaiser, L. J. Mueller, G. Guirado, C. J. Bardeen, Macromolecules 2007, 40, 9040–9044; b) S. Y. Lee, S.-K. Kim, T. M. Nguyen, J. S. Chung, S. B. Lee, K. Y. Choi, Macromolecules, 2011, 44, 1385–1392; c) N. Haberkorn, S. A. L. Weber, R. Berger, P. Theato, ACS Appl. Mater. Interfaces, 2010, 2, 1573–1580.
10 Mandil, C. World Energy Outlook; International Energy Agency: Paris, France, 2006.
11 Black, R. Lighting the Key to Energy Savings; U.K., 2006.
12 J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
13 M. C. Gather, A. Kohnen, K. Meerholz, Adv. Mater. 2011, 23, 233.
14 J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455–1457.
15 D. O’Carroll, I. Lieberwirth, G. Redmond, Nanotechnology 2007, 2, 180–184.
16 L. S. Van Dyke, C. R. Martin, Langnuir 1990, 6, 1118–1123.
17 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685–688.
18 A. M. van de Craats, J. M. Warman, A. Fechtenkotter, J. D. Brand, M. A. Harbison, K. Mullen, Adv. Mater. 1999, 11, 1469–1472.
19 K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533–4542.
20 S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324–1338.
21 C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang, Y. Li, Angew. Chem. Int. Ed. 2011, 50, 9386–9390.
22 C. Giansante, G. Raffy, C. Schafer, H. Rahma, M.-T. Kao, A. G. L. Olive, A. D. Guerzo, J. Am. Chem. Soc., 2011, 133, 316–325.
23 H. Yang, C. R. Lightner, L. Dong , ACS Nano, 2012, 6, 622–628.
24 A. Del Campo, E. Arzt, Chem. Rev. 2008, 108, 911−945
25 Y. S. Zhao, H. B. Fu, F. Q. Hu, A. D. Peng, W. S. Yang, J. N. Yao, Adv. Mater. 2008, 20, 79–83.
26 K. Dawson , P. Lovera , D. Iacopino , A. O'Riordan, G. Redmond, J. Mater. Chem., 2011, 21, 15995–16000.
27 A. A. Shoustikov, Y. J. You, M. E. Thompson, IEEE J. Sel. Top. Quantum Electron. 1998, 4, 3–13.
28 M. A. Baldo, M. E. Thompson, S. R. Forrest, Pure Appl. Chem. 1999, 71, 2095–2106.
29 E. O'Connor, A. O'Riordan, H. Doyle, S. Moynihan, A. Cuddihy, G. Redmond, Appl. Phys. Lett. 2005, 86, 201114.
30 B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett. 1995, 66, 1316–1318.
31 T. Forster, Discuss. Faraday Soc. 1959, 27, 7–17.
32 D. L. Dexter, J. Chem. Phys. 1953, 21, 836–850.
33 D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D.-C. Kim, J. Bang, J. Kim, J. Joo, ACS Nano, 2010, 4, 5155–5162.
34 X. Wang, J. Yan, Y. Zhou, J. Pei, J. Am. Chem. Soc., 2010, 132, 15872–15874.
35 a) K.-T. Wong et al. J. Am. Chem. Soc., 2002, 124, 11576-11577; b) K.-T. Wong et al. J. Am. Chem. Soc., 2003, 125, 3710–3711; c) T.-C. Chao, Y.-T. Lin C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu, Adv. Mater. 2005, 17, 992–996; d) C.-C. Wu, W.-G. Liu, W.-Y. Hung, T.-L. Liu, Y.-T. Lin, H.-W. Lin, Appl. Phys. Lett., 2005, 87, 052103.
36 S.-Y. Ku, L.-C. Chi, W.-Y. Hung, S.-W. Yang, T.-C. Tsai, K.-T. Wong, Y.-H.Chen, C. I. Wu, J. Mater. Chem., 2009, 19, 773–780.
37 R. Mondal, S. Ko, Z. Bao, J. Mater. Chem., 2010, 20, 10568–10576.
38 F. Huang, Y.-J. Cheng, Y. Zhang, M. S. Liu, A. K.-Y. Jen, J. Mater. Chem., 2008, 18, 4495–4509.
39 C. Zhang, Y. S. Zhao, J. Yao, Phys. Chem. Chem. Phys., 2011, 13, 9060–9073
40 Q. Liao, H. Fu, C. Wang, J. Yao, Angew. Chem. Int. Ed. 2011, 50, 4942 –4946
41 A. L. Stevens, A. Kaeser, A. P. H. J. Schenning, L. M. Herz, ACS Nano, 2012, 6, 4777–4787
42 S. Halivni, A. Sitt, I. Hadar, U. Banin, ACS Nano, 2012, 6, 2758–2765
43 A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C, 2000, 1, 1–21.
44 Z. G. Guo, F. Zhou, J. C. Hao, W. M. Liu, J. Am. Chem. Soc. 2005, 127, 15670–15671.
45 R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988–994.
46 A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 3, 546–551.
47 R. E. Johnson, R. H. Dettre, Adv. Chem. Ser. 1964, 43, 112–135.
48 L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Langmuir 2008, 24, 4114–4119.
49 M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Adv. Mater. 2005, 17, 1977–1981.
50 X. Hong, X. Gao, L. Jiang, J. Am. Chem. Soc. 2007, 129, 1478–1479.
51 B. Bhushan, E. K. Her, Langmuir 2010, 26, 8207–8217.
52 a) L. Feng, S. H. Li, H. J. Li, J. Zhai, Y. L. Song, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed. 2002, 41, 1221; b) L. Feng, Y. L. Song, J. Zhai, B. Q. Liu, J. Xu, L. Jiang, D. B. Zhu, Angew. Chem. Int. Ed. 2003, 42, 800.
53 a) M. Morra, E. Occhiello, F. Garbassi, Langmuir 1989, 5, 872; (b) J. P. Youngblood, T. J. McCarthy, Macromolecules 1999, 32, 6800; c) M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 2000, 16, 5754; d) I. Woodward, W. C. E. Schofield, V. Roucoules, J. P. S. Badyal, Langmuir 2003, 19, 3432; e) J. Kim, C.-J. Kim, Proc.-IEEE Annu. Int. Conf. Micro Electro Mech. Syst. 2002, 479.
54 D. Chen, W. Zhao, and T. P. Russell, ACS Nano, 2012, 6, 1479–1485
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16214-
dc.description.abstract伴隨奈米與照明科技的發展,以光學奈米元件作為替代光源日漸受到重視,其中白光奈米物件的製備,因其組成的複雜性,尤具挑戰。本論文中,我們調控功能性中心的能隙,設計出三種以芴基衍生物為發光中心之熱聚合單體,分別為紅光4VB-DFTP、綠光4VB-DFBTA及藍光4VB-T3,藉由陽極氧化鋁模板輔助與紅、綠、藍光材料莫耳比率的精準控制,成功地製備出D65白光奈米管與白光奈米陣列。首先利用模板浸潤法,單體溶液因毛細作用力滲入模板孔洞,再利用單體原位聚合法,進入模板通道內之單體經熱聚合而形成交鏈之高分子奈米管。順應所設計分子的光電特性,我們利用掃描及穿透式電子顯微鏡以確認奈米物件之表面形貌與內部結構,而螢光特性與能量轉移現象則透過雷射掃描共軛聚焦顯微鏡與時間解析單光子計數系統加以觀測分析。此外,我們所製備的奈米陣列具有超疏水及高附著特性,利用接觸角遲滯現象,能進一步應用於微量液體運輸。本文之單體設計概念,不僅利於將特殊光電特性的分子簡易地轉化為一維奈米物件,其螢光與半導體特性的芴基分子架構更具有應用於奈米光電元件的潛力。zh_TW
dc.description.abstractThe white light-emitting nanotubes were achieved by energy transfer from the host matrix, 4VB-T3, to the guest dopants, 4VB-DFBTA and 4VB-DFTP. Not only that the decreasing luminescence of the donor paralleled the increasing luminescence of the acceptors but also the evident decrease of the donor’s lifetime recorded by time-correlated single photon counting technique confirmed the effective host-guest energy transfer. The Commission Internationale de l'Eclairage 1931 coordinates estimated from localized photoluminescence spectra of the fine-tuned white light nanotubes shows the high homogeneity of D65 daylight emission. One of the applications of the synthesized nanoarray in liquid transportation with its superhydrophobicity and strong surface adhesion was demonstrated by contact angle hysteresis. The novelty of this approach existed in producing high quality multi-color or white light-emitting nanotubes (HQWLE-NTs) and nanoarrays by a simple and high throughput method for further applications in nanoscale optoelectronic devices.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:05:22Z (GMT). No. of bitstreams: 1
ntu-101-R99223140-1.pdf: 3584277 bytes, checksum: 05c9d3c6d64dca56a60f61dd4a1e7a75 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbstract in Chinese…………………………………………………………………... i
Abstract…………………………………………………………………………......... ii
Contents……………………………………………………………………………… iii
Index of Figure……………………………………………………………………..... v
Index of Table………………………………………………………………………... vi
Index of Scheme……………………………………………………………………... vi
Chapter 1. Introduction……………………………………………………………... 1
1-1 Properties and Applications of One Dimensional Nanostructures………………3
1-2 Anodic Aluminum Oxide-Assisted Fabrication of 1-D Nanomaterials………. 8
1-3 White Light Emitting One Dimensional Nanomaterials……………………… 14
Chapter 2. Molecular Design of the Crosslinkable RGB Fluorescent Monomers….. 18
2-1 Introduction…………………………………………………………………… 18
2-2 Design of Functional Cores…………………………………………………… 19
2-3 Design of Polymerizable Pendents……………………………………………. 23
Chapter 3. Multi-color Fluorescent Nanotubes…………………………… 28
3-1 Fabrication of the Nanotubes…………………………………………………. 28
3-2 Characterization of the Nanotubes……………………….…………………… 31
3-3 Applications in White Light Emission………………………………….. 37
Chapter 4. Multi-color Fluorescent Nanotube Arrays…………… 41
4-1 Introduction…………………………………………………………………… 41
4-2 Fabrication of Nanotube Arrays…………………………………………….… 42
4-3 White Light Emitting Nanoarray……………………………………………… 47
4-4 Superhydrophobicity and Large Contact Angle Hysteresis of the Nanoarrays.. 54
Chapter 5. Summary………………………………………………………………... 59
Chapter 6. Experimental Section……………………………………………60
6-1 General Experiment…………………………………………………………... 60
6-2 Nanotube Preparation…………………………………………………………. 60
6-3 Nanoarray Fabrication………………………………………………………… 61
6-4 Characterization Technique…………………………………………………… 62
6-4-1 Scanning electron microscopy…………………………………………… 62
6-4-2 Transmission electron microscopy……………………………………… 62
6-4-3 Confocal Laser Scanning Microscopy…………………………………… 62
6-4-4 Time-Correlated Single Photon Counting…………………………… 62
6-4-5 Contact Angle………………………………………………….………… 62
6-5 Synthesis…………………………………...……………….………………… 63
Reference………………………………………………………..…………………… 67
Appendex 1H and 13C NMR spectrum……………………………………………… 71
dc.language.isoen
dc.subject陽極氧化鋁zh_TW
dc.subject模板輔助zh_TW
dc.subject奈米管zh_TW
dc.subject原位聚合zh_TW
dc.subject白光zh_TW
dc.subjecttemplate-assisteden
dc.subjectwhite lighten
dc.subjectnanotubeen
dc.subjectfluoreneen
dc.subjectin situ polymerizationen
dc.subjectAAOen
dc.title以紅、綠、藍光芴基衍生物為單體之陽極氧化鋁模板輔助白光高分子奈米管合成與鑑定zh_TW
dc.titleWhite Light-Emitting Nanotube from Template-Assisted in situ Polymerization with the Blends of RGB Fluorene Derivativesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛景中(Jing-Jong Shyue),孫世勝(Shih-Sheng Sun)
dc.subject.keyword白光,奈米管,原位聚合,陽極氧化鋁,模板輔助,zh_TW
dc.subject.keywordwhite light,nanotube,fluorene,in situ polymerization,AAO,template-assisted,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2012-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved