請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16206
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖秀娟 | |
dc.contributor.author | An-Chieh Kao | en |
dc.contributor.author | 高安潔 | zh_TW |
dc.date.accessioned | 2021-06-07T18:05:01Z | - |
dc.date.copyright | 2012-08-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-27 | |
dc.identifier.citation | 許翔雁 (2007)。台灣烏腳病地區含砷地下水菌種Bosea sp. str. L7506的分離與分析。國立台灣大學生物環境系統工程學研究所碩士論文。
Abernathy, C.O., Thomas, D.J., and Calderon, R.L. (2003). Health effects and risk assessment of arsenic. J Nutr 133, 1536S-1538S. Achour, A.R., Bauda, P., and Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158, 128-137. Afkar, E., Lisak, J., Saltikov, C., Basu, P., Oremland, R.S., and Stolz, J.F. (2003). The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. Fems Microbiol Lett 226, 107-112. Ahluwalia, S.S., and Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98, 2243-2257. Ahmann, D., Roberts, A.L., Krumholz, L.R., and Morel, F.M. (1994). Microbe grows by reducing arsenic. Nature 371, 750. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169. Anderson, G.L., Williams, J., and Hille, R. (1992). The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267, 23674-23682. Azizur Rahman, M., Hasegawa, H., and Peter Lim, R. (2012). Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116, 118-135. Bae, H.S., Rash, B.A., Rainey, F.A., Nobre, M.F., Tiago, I., da Costa, M.S., and Moe, W.M. (2007). Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int J Syst Evol Microbiol 57, 1521-1526. Banerjee, S., Datta, S., Chattyopadhyay, D., and Sarkar, P. (2011). Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 46, 1736-1747. Brennan, R., and McBean, E. (2011). A performance assessment of arsenic-iron removal plants in the Manikganj district of Bangladesh. J Water Health 9, 317-329. Campbell, K.M., Malasarn, D., Saltikov, C.W., Newman, D.K., and Hering, J.G. (2006). Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environ Sci Technol 40, 5950-5955. Chang, J.S., Kim, Y.H., and Kim, K.W. (2008). The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80, 155-165. Chang, J.S., Yoon, I.H., and Kim, K.W. (2007). Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. J Microbiol Biotechnol 17, 812-821. Chang, J.S., Yoon, I.H., Lee, J.H., Kim, K.R., An, J., and Kim, K.W. (2010). Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32, 95-105. Chen, C.M., Misra, T.K., Silver, S., and Rosen, B.P. (1986). Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261, 15030-15038. Cullen, W.R., and Reimer, K.J. (1989). Arsenic Speciation in the Environment. Chem Rev 89, 713-764. Cummings, D.E., Caccavo, F., Fendorf, S., and Rosenzweig, R.F. (1999). Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33, 723-729. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K., and Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18, 5-15. Deng, T.L., and Liao, M.X. (2002). Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach. Hydrometallurgy 63, 249-255. Diorio, C., Cai, J., Marmor, J., Shinder, R., and DuBow, M.S. (1995). An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177, 2050-2056. Duquesne, K., Lieutaud, A., Ratouchniak, J., Muller, D., Lett, M.C., and Bonnefoy, V. (2008). Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10, 228-237. Edelman, P. (1990). Environmental and workplace contamination in the semiconductor industry: implications for future health of the workforce and community. Environ Health Perspect 86, 291-295. Ellis, P.J., Conrads, T., Hille, R., and Kuhn, P. (2001). Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9, 125-132. Enwall, K., and Hallin, S. (2009). Comparison of T-RFLP and DGGE techniques to assess denitrifier community composition in soil. Lett Appl Microbiol 48, 145-148. Fakhrai-Rad, H., Pourmand, N., and Ronaghi, M. (2002). Pyrosequencing (TM): An accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19, 479-485. Gihring, T.M., and Banfield, J.F. (2001). Arsenite oxidation and arsenate respiration by a new Thermus isolate. Fems Microbiol Lett 204, 335-340. Gihring, T.M., Druschel, G.K., McCleskey, R.B., Hamers, R.J., and Banfield, J.F. (2001). Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations. Environ Sci Technol 35, 3857-3862. Giles, D.E., Mohapatra, M., Issa, T.B., Anand, S., and Singh, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manage 92, 3011-3022. Golab, Z., Breitenbach, M., and Jezierski, A. (1995). Sites of Copper-Binding in Streptomyces Pilosus. Water Air Soil Pollut 82, 713-721. Gray, M.W., Sankoff, D., and Cedergren, R.J. (1984). On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res 12, 5837-5852. Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ali, M.A., Jay, J., Beckie, R., Niedan, V., Brabander, D., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602-1606. Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92, 2355-2388. Hassan, S.H., Kim, S.J., Jung, A.Y., Joo, J.H., Eun Oh, S., and Yang, J.E. (2009). Biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri. J Gen Appl Microbiol 55, 27-34. Hoeft, S.E., Kulp, T.R., Stolz, J.F., Hollibaugh, J.T., and Oremland, R.S. (2004). Dissimilatory arsenate reduction with sulfide as electron donor: experiments with mono lake water and Isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70, 2741-2747. Hsieh, L.H.C., Weng, Y.H., Huang, C.P., and Li, K.C. (2008). Removal of arsenic from groundwater by electro-ultrafiltration. Desalination 234, 402-408. Ilialetdinov, A.N., and Abdrashitova, S.A. (1981). Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia 50, 197-204. Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., and Lloyd, J.R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68-71. Ji, G., and Silver, S. (1992). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A 89, 9474-9478. Johnson, D.L., and Pilson, M.E.Q. (1972). Spectrophotometric Determination of Arsenite, Arsenate, and Phosphate in Natural Waters. Anal Chim Acta 58, 289-299. Kang, S.Y., Lee, J.U., and Kim, K.W. (2007). Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 36, 54-58. Kao, Y.H., Liu, C.W., Jang, C.S., Zanh, S.W., and Lin, K.H. (2010). Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy Water Environ 9, 301-307. Kashyap, D.R., Botero, L.M., Franck, W.L., Hassett, D.J., and McDermott, T.R. (2006). Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188, 1081-1088. Katsoyiannis, I.A., and Zouboulis, A.I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Res 38, 17-26. Kim, M., Jeong, S.Y., Yoon, S.J., Cho, S.J., Kim, Y.H., Kim, M.J., Ryu, E.Y., and Lee, S.J. (2008). Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. J Biosci Bioeng 106, 498-502. Krafft, T., and Macy, J.M. (1998). Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255, 647-653. Langner, H.W., Jackson, C.R., Mcdermott, T.R., and Inskeep, W.P. (2001). Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35, 3302-3309. Leist, M., Casey, R.J., and Caridi, D. (2000). The management of arsenic wastes: problems and prospects. J Hazard Mater 76, 125-138. Lerman, S.A., Clarkson, T.W., and Gerson, R.J. (1983). Arsenic Uptake and Metabolism by Liver-Cells Is Dependent on Arsenic Oxidation-State. Chem Biol Interact 45, 401-406. Liao, V.H.C., Chu, Y.J., Su, Y.C., Hsiao, S.Y., Wei, C.C., Liu, C.W., Liao, C.M., Shen, W.C., and Chang, F.J. (2011a). Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123, 20-29. Liao, V.H.C., Chu, Y.J., Su, Y.C., Lin, P.C., Hwang, Y.H., Liu, C.W., Liao, C.M., Chang, F.J., and Yu, C.W. (2011b). Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. J Hazard Mater 197, 397-403. Littera, P., Urik, M., Sevc, J., Kolencik, M., Gardosova, K., and Molnarova, M. (2011). Removal of arsenic from aqueous environments by native and chemically modified biomass of Aspergillus niger and Neosartorya fischeri. Environ Technol 32, 1215-1222. Liu, A., Garcia-Dominguez, E., Rhine, E.D., and Young, L.Y. (2004). A novel arsenate respiring isolate that can utilize aromatic substrates. Fems Microbiol Ecol 48, 323-332. Loukidou, M.X., Matis, K.A., Zouboulis, A.I., and Liakopoulou-Kyriakidou, M. (2003). Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37, 4544-4552. Lu, K.L., Liu, C.W., Wang, S.W., Jang, C.S., Lin, K.H., Liao, V.H., Liao, C.M., and Chang, F.J. (2011). Assessing the characteristics of groundwater quality of arsenic contaminated aquifers in the blackfoot disease endemic area. J Hazard Mater 185, 1458-1466. Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E.D. (2001). A fern that hyperaccumulates arsenic. Nature 409, 579. Macur, R.E., Jackson, C.R., Botero, L.M., McDermott, T.R., and Inskeep, W.P. (2004). Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38, 104-111. Macur, R.E., Wheeler, J.T., McDermott, T.R., and Inskeep, W.P. (2001). Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35, 3676-3682. Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahill, M., and Sly, L.I. (1996). Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46, 1153-1157. Macy, J.M., Santini, J.M., Pauling, B.V., O'Neill, A.H., and Sly, L.I. (2000). Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173, 49-57. Matis, K.A., Zouboulis, A.I., Zamboulis, D., and Valtadorou, A.V. (1999). Sorption of As(V) by goethite particles and study of their flocculation. Water Air Soil Pollut 111, 297-316. Mukhopadhyay, R., Rosen, B.P., Phung, L.T., and Silver, S. (2002). Microbial arsenic: from geocycles to genes and enzymes. Fems Microbiol Rev 26, 311-325. Muller, D., Lievremont, D., Simeonova, D.D., Hubert, J.C., and Lett, M.C. (2003). Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185, 135-141. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695-700. Muyzer, G., and Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73, 127-141. Navarro, P., and Alguacil, F.J. (2002). Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy 66, 101-105. Niggemyer, A., Spring, S., Stackebrandt, E., and Rosenzweig, R.F. (2001). Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67, 5568-5580. Nordstrom, D.K. (2002). Public health. Worldwide occurrences of arsenic in ground water. Science 296, 2143-2145. Nziguheba, G., and Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390, 53-57. Oremland, R.S., and Stolz, J.F. (2003). The ecology of arsenic. Science 300, 939-944. Oremland, R.S., and Stolz, J.F. (2005). Arsenic, microbes and contaminated aquifers. Trends Microbiol 13, 45-49. Pacheco Aguilar, J.R., Pena Cabriales, J.J., and Maldonado Vega, M. (2008). Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. Int J Phytoremediation 10, 359-370. Páez-Espino, D., Tamames, J., de Lorenzo, V., and Canovas, D. (2009). Microbial responses to environmental arsenic. Biometals 22, 117-130. Parfitt, R. L. (1979). Anion adsorption by soils and soil materials. Adv Agron 30, 1-50. Peix, A., Rivas, R., Santa-Regina, I., Mateos, P.F., Martinez-Molina, E., Rodriguez-Barrueco, C., and Velazquez, E. (2004). Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54, 847-850. Pepi, M., Protano, G., Ruta, M., Nicolardi, V., Bernardini, E., Focardi, S.E., and Gaggi, C. (2011). Arsenic-resistant Pseudomonas spp. and Bacillus sp. bacterial strains reducing As(V) to As(III), isolated from Alps soils, Italy. Folia Microbiol (Praha) 56, 29-35. Philips, S.E., and Taylor, M.L. (1976). Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32, 392-399. Pott, W.A., Benjamin, S.A., and Yang, R.S. (2001). Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Rev Environ Contam Toxicol 169, 165-214. Rehman, A., Butt, S.A., and Hasnain, S. (2010). Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotechnol 9, 1493-1498. Rhine, E.D., Garcia-Dominguez, E., Phelps, C.D., and Young, L.Y. (2005). Environmental microbes can speciate and cycle arsenic. Environ Sci Technol 39, 9569-9573. Rhine, E.D., Onesios, K.M., Serfes, M.E., Reinfelder, J.R., and Young, L.Y. (2008). Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Environ Sci Technol 42, 1423-1429. Rhine, E.D., Phelps, C.D., and Young, L.Y. (2006). Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8, 899-908. Rosen, B.P. (2002). Biochemistry of arsenic detoxification. Febs Lett 529, 86-92. Rosen, B.P., Weigel, U., Karkaria, C., and Gangola, P. (1988). Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase. J Biol Chem 263, 3067-3070. Rosen, P. (1971). Theoretical significance of arsenic as a carcinogen. J Theor Biol 32, 425-426. Saltikov, C.W., Cifuentes, A., Venkateswaran, K., and Newman, D.K. (2003). The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69, 2800-2809. Saltikov, C.W., and Newman, D.K. (2003). Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A 100, 10983-10988. Saltikov, C.W., Wildman, R.A., Jr., and Newman, D.K. (2005). Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J Bacteriol 187, 7390-7396. Santini, J.M., Sly, L.I., Schnagl, R.D., and Macy, J.M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66, 92-97. Santini, J.M., and vanden Hoven, R.N. (2004). Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186, 1614-1619. Seki, H., Suzuki, A., and Maruyama, H. (2005). Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J Colloid Interface Sci 281, 261-266. Sen Gupta, B., Chatterjee, S., Rott, U., Kauffman, H., Bandopadhyay, A., DeGroot, W., Nag, N.K., Carbonell-Barrachina, A.A., and Mukherjee, S. (2009). A simple chemical free arsenic removal method for community water supply--a case study from West Bengal, India. Environ Pollut 157, 3351-3353. Shi, W., Wu, J., and Rosen, B.P. (1994). Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269, 19826-19829. Silver, S. (1998). Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20, 1-12. Silver, S., and Phung, L.T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71, 599-608. Stokstad, E. (2002). Bangladesh. Agricultural pumping linked to arsenic. Science 298, 1535-1537. Stolz, J.F., Basu, P., Santini, J.M., and Oremland, R.S. (2006). Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60, 107-130. Stolz, J.F., and Oremland, R.S. (1999). Bacterial respiration of arsenic and selenium. Fems Microbiol Rev 23, 615-627. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J.F., and Oremland, R.S. (1998). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171, 19-30. Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y., and Horikoshi, K. (2002). Isolation and metabolic characteristics of previously uncultured members of the order aquificales in a subsurface gold mine. Appl Environ Microbiol 68, 3046-3054. Tamaki, S., and Frankenberger, W.T., Jr. (1992). Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124, 79-110. Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599. Tseng, W.P. (1977). Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect 19, 109-119. Tuzen, M., Sari, A., Mendil, D., Uluozlu, O.D., Soylak, M., and Dogan, M. (2009). Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum. J Hazard Mater 165, 566-572. Vahter, M. (1994). Species differences in the metabolism of arsenic compounds. Appl Organomet Chem 8, 175-182. van Halem, D., Bakker, S.A., Amy, G.L., and van Dijk, J.C. (2009). Arsenic in drinking water: a worldwide water quality concern for water supply companies. Drink Water Eng Sci 2, 29-34. Vijayaraghavan, K., and Yun, Y.S. (2008). Bacterial biosorbents and biosorption. Biotechnol Adv 26, 266-291. Visoottiviseth, P., Francesconi, K., and Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118, 453-461. Wang, S., and Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manage 90, 2367-2376. Weeger, W., Lievremont, D., Perret, M., Lagarde, F., Hubert, J.C., Leroy, M., and Lett, M.C. (1999). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12, 141-149. Woolson, E.A. (1972). Effects of fertiliser materials and combinations on the phytotoxicity, availability and content of arsenic in corn (maize). J Sci Food Agric 23, 1477-1481. Wu, J., and Rosen, B.P. (1993). The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol 8, 615-623. Wu, Y., Wen, Y., Zhou, J., and Dai, Q. (2012). The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III). Environ Sci Pollut Res Int. DOI: 10.1007/s11356-012-0861-9. Zouboulis, A., and Katsoyiannis, I. (2002). Removal of arsenates from contaminated water by coagulation-direct filtration. Sep Sci Technol 37, 2859-2873. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16206 | - |
dc.description.abstract | 飲用含砷地下水對人類健康所造成的危害已是全球性的議題。雖然地下水含砷在台灣很早就被發現,但影響砷釋放的因子以及如何降低砷汙染仍需探討。本研究中,我們討論農業行為裡肥料的使用(磷肥、銨肥)對砷釋出的影響,並從砷汙染地區篩選出一株具有三價砷氧化能力的菌株,探討其應用於砷的生物復育之潛力。實驗結果顯示,在厭氧環境下磷肥與銨肥皆會使砷自土壤中釋放到地下水。此外,添加磷肥與銨肥會加速鐵的釋出並改變微生物群相。As7325為自砷汙染地區篩選出來的細菌,屬於Pseudomonas屬,異營菌。As7325最適合生長的溫度為30oC,最適合生長的酸鹼值約為7。As7325對砷具有高抗性,可抵抗1 mM三價砷與高於100 mM五價砷。由砷的氧化實驗中發現,利用現地地下水在好氧環境條件下,As7325可以在一天內將30 μM (~ 2250 μg/L)三價砷全部氧化成五價砷。此外,經冷凍乾燥後的As7325可用來做為生物吸附劑;實驗結果顯示As7325能在六天內百分之百吸附6.67 μM (~ 500 μg/L)或13.33 μM (~ 1000 μg/L)的五價砷。以上結果皆顯示As7325在砷的生物復育上具有很大的應用潛力。 | zh_TW |
dc.description.abstract | The contamination of groundwater with arsenic is a major concern to public health from local to international. Although arsenic groundwater problems in Taiwan had been noted for several years, the factors affecting arsenic release and technology to significantly reduce arsenic level still remain elucidated. In this study, we investigate the effect of agricultural behavior such as fertilizing (ammonium and phosphate) on arsenic mobilization, and isolate an arsenite-oxidizing bacterium As7325 to examine its potential for arsenic bioremediation. The results showed that under anaerobic condition, both phosphate and ammonium caused arsenic release from sediment to groundwater. In addition, the addition of phosphate and ammonium also enhanced the release of ferrous and changed the microbial communities. Bacterial strain As7325, which was isolated from the arsenic-contaminated site, belongs to the genus of Pseudomonas. Strain As7325 is a heterotroph. The optimal temperature for growth was 30oC and the pH was about 7. Strain As7325 could resist high concentration of arsenic with minimum inhibitory concentration at 1 mM for arsenite and over 100 mM for arsenate. Strain As7325 could completely oxidize 30 μM (~ 2250 μg/L) arsenite using in situ groundwater within 1 day under aerobic condition. In addition, lyophilized cell pellet of strain As7325 was used as a biosorbent and could adsorb 6.67 μM (~ 500 μg/L) and 13.33 μM (~ 1000 μg/L) arsenate near 100% at 6-day period. The results showed that strain As7325 has the potential for bioremediation of arsenic. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:05:01Z (GMT). No. of bitstreams: 1 ntu-101-R99622002-1.pdf: 1223926 bytes, checksum: b05880122c1c2a9b354050d13ca3ac07 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES VIII LIST OF ABBREVIATIONS IX CHAPTER 1 INTRODUCTION 1 1.1 Motivation of study 1 1.2 Arsenic in the environment 2 1.3 Arsenic microbial mechanisms 5 1.3.1 Detoxification and resistance system 6 1.3.2 Arsenite-oxidizing microbes 7 1.3.3 Arsenate-reducing microbes 8 1.4 Arsenic bioremediation technology 9 1.5 Purpose of study 11 CHAPTER 2 MATERIALS & METHODS 14 2.1 Sampling site description 14 2.2 Chemicals 14 2.3 Medium compositions 14 2.4 Phosphate and ammonium enrichment assay 18 2.5 Denaturing gradient gel electrophoresis assay 18 2.5.1 PCR for denaturing gradient gel electrophoresis 19 2.5.2 Denaturing gradient gel electrophoresis conditions 20 2.6 Isolation of arsenite-oxidizing bacterial strain As7325 21 2.7 Growth conditions for strain As7325 21 2.8 Substrate test for strain As7325 22 2.9 Minimum inhibitory concentration test for As7325 22 2.10 PCR amplification of 16S rRNA 23 2.11 PCR amplification of aoxB 23 2.12 Phylogenetic analysis 24 2.13 Arsenite transformation assay 24 2.14 Preparation of lyophilized cell pellet 25 2.15 Arsenate biosorption assay 25 CHAPTER 3 RESULTS 26 3.1 Effects of fertilizers on arsenic release 26 3.2 Denaturing gradient gel electrophoresis analysis of microbial diversity 27 3.3 Characterization of the arsenite-oxidizing strain As7325 31 3.3.1 General description of bacterial strain As7325 31 3.3.2 Sequence analysis of strain As7325 31 3.3.3 Substrate test for growth of strain As7325 32 3.3.4 Minimum inhibitory concentration test for strain As7325 39 3.4 Arsenite oxidation by strain As7325 39 3.5 Arsenite-oxidizing marker gene detection (aoxB) 40 3.6 Arsenate biosorption using strain As7325 40 CHAPTER 4 DISCUSSION 48 4.1 The effects of fertilizer utilization on arsenic mobilization 48 4.2 Microbial diversity upon supplemented with fertilizers 49 4.3 Arsenite-oxidizing bacterial strain As7325 from arsenic-contaminated area 50 4.4 Arsenate adsorption by bacterial strain As7325 53 CHAPTER 5 SUGGESTED FUTURE DIRECTION 57 REFERENCES 58 APPENDIXES 70 | |
dc.language.iso | en | |
dc.title | 臺灣烏腳病疫區含砷地下水釋出因子及其生物復育 | zh_TW |
dc.title | The Release Factors and Bioremediation for Arsenic-contaminated Groundwater in
Blackfoot Disease Endemic Region in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈偉強,陳昭瑩,王珮玲 | |
dc.subject.keyword | 砷,銨,磷酸鹽,三價砷氧化菌,地下水,生物復育, | zh_TW |
dc.subject.keyword | arsenic,ammonium,phosphate,arsenite-oxidizing bacteria,groundwater,bioremediation, | en |
dc.relation.page | 72 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。