請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏伯勳 | |
dc.contributor.author | Jia-Cheng Zheng | en |
dc.contributor.author | 鄭家成 | zh_TW |
dc.date.accessioned | 2021-06-07T18:04:27Z | - |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-27 | |
dc.identifier.citation | 1. Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Nasser Eddine A, Mann P, Goosmann C, Bandermann S, Smith D et al: Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. The Journal of clinical investigation 2005, 115(9):2472-2479.
2. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P, Bester D, Meyer M, Corrah T, Collin M et al: Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(14):8005-8009. 3. Casanova JL, Abel L: Genetic dissection of immunity to mycobacteria: the human model. Annual review of immunology 2002, 20:581-620. 4. North RJ, Jung YJ: Immunity to tuberculosis. Annual review of immunology 2004, 22:599-623. 5. Kramnik I, Dietrich WF, Demant P, Bloom BR: Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 2000, 97(15):8560-8565. 6. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I: Ipr1 gene mediates innate immunity to tuberculosis. Nature 2005, 434(7034):767-772. 7. Bloch DB, Nakajima A, Gulick T, Chiche JD, Orth D, de La Monte SM, Bloch KD: Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Molecular and cellular biology 2000, 20(16):6138-6146. 8. Kramnik I: Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene. Current topics in microbiology and immunology 2008, 321:123-148. 9. Kadereit S, Gewert DR, Galabru J, Hovanessian AG, Meurs EF: Molecular cloning of two new interferon-induced, highly related nuclear phosphoproteins. The Journal of biological chemistry 1993, 268(32):24432-24441. 10. Welsh GI, Kadereit S, Coccia EM, Hovanessian AG, Meurs EF: Colocalization within the nucleolus of two highly related IFN-induced human nuclear phosphoproteins with nucleolin. Experimental cell research 1999, 250(1):62-74. 11. Watashi K, Hijikata M, Tagawa A, Doi T, Marusawa H, Shimotohno K: Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Molecular and cellular biology 2003, 23(21):7498-7509. 12. Nicewonger J, Suck G, Bloch D, Swaminathan S: Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. Journal of virology 2004, 78(17):9412-9422. 13. Tosh K, Campbell SJ, Fielding K, Sillah J, Bah B, Gustafson P, Manneh K, Lisse I, Sirugo G, Bennett S et al: Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(27):10364-10368. 14. Cong J, Li G, Zhou D, Tao Y, Xiong Y: [Study on relation between Sp110 gene polymorphism and tuberculosis genetic susceptibility of Chongqing Han People]. Wei sheng yan jiu = Journal of hygiene research 2010, 39(5):540-544. 15. Liang L, Zhao YL, Yue J, Liu JF, Han M, Wang H, Xiao H: Association of SP110 gene polymorphisms with susceptibility to tuberculosis in a Chinese population. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 2011, 11(5):934-939. 16. Babb C, Keet EH, van Helden PD, Hoal EG: SP110 polymorphisms are not associated with pulmonary tuberculosis in a South African population. Human genetics 2007, 121(3-4):521-522. 17. Abhimanyu, Jha P, Jain A, Arora K, Bose M: Genetic association study suggests a role for SP110 variants in lymph node tuberculosis but not pulmonary tuberculosis in north Indians. Human immunology 2011, 72(7):576-580. 18. Png E, Alisjahbana B, Sahiratmadja E, Marzuki S, Nelwan R, Adnan I, van de Vosse E, Hibberd M, van Crevel R, Ottenhoff TH et al: Polymorphisms in SP110 are not associated with pulmonary tuberculosis in Indonesians. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 2012, 12(6):1319-1323. 19. Roscioli T, Cliffe ST, Bloch DB, Bell CG, Mullan G, Taylor PJ, Sarris M, Wang J, Donald JA, Kirk EP et al: Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nature genetics 2006, 38(6):620-622. 20. Knapp S, Yee LJ, Frodsham AJ, Hennig BJ, Hellier S, Zhang L, Wright M, Chiaramonte M, Graves M, Thomas HC et al: Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes and immunity 2003, 4(6):411-419. 21. Li CZ, Kato N, Chang JH, Muroyama R, Shao RX, Dharel N, Sermsathanasawadi R, Kawabe T, Omata M: Polymorphism of OAS-1 determines liver fibrosis progression in hepatitis C by reduced ability to inhibit viral replication. Liver international : official journal of the International Association for the Study of the Liver 2009, 29(9):1413-1421. 22. Ren S, Yu H, Zhang H, Liu Y, Huang Y, Ma L, Wei L, Wu H, Chen X: Polymorphisms of interferon-inducible genes OAS associated with interferon-alpha treatment response in chronic HBV infection. Antiviral research 2011, 89(3):232-237. 23. Malathi K, Dong B, Gale M, Jr., Silverman RH: Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007, 448(7155):816-819. 24. Chakrabarti A, Jha BK, Silverman RH: New insights into the role of RNase L in innate immunity. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 2011, 31(1):49-57. 25. Silverman RH: Implications for RNase L in prostate cancer biology. Biochemistry 2003, 42(7):1805-1812. 26. Mullan PB, Hosey AM, Buckley NE, Quinn JE, Kennedy RD, Johnston PG, Harkin DP: The 2,5 oligoadenylate synthetase/RNase L pathway is a novel effector of BRCA1- and interferon-gamma-mediated apoptosis. Oncogene 2005, 24(35):5492-5501. 27. Elmore S: Apoptosis: a review of programmed cell death. Toxicologic pathology 2007, 35(4):495-516. 28. Cai L, Pan H, Trzcinski K, Thompson CM, Wu Q, Kramnik I: MYBBP1A: a new Ipr1's binding protein in mice. Molecular biology reports 2010, 37(8):3863-3868. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16191 | - |
dc.description.abstract | 結核病主要是由結核分枝桿菌感染所造成的病症,在全球是致死率僅次於愛滋病的感染症。由於多重抗藥性和廣效性抗藥性結核分枝桿菌菌株的產生以及結核病患者共同感染愛滋病使得結核病成為當前很急迫的公共衛生問題。根據統計全球約有三分之一的人口已感染結核分枝桿菌,但是其中只有不到10%的人會在他們一生的某個時期產生結核病。由先前的研究指出,在小鼠的第1號染色體之sst1基因座中找到 Ipr1 基因,此 Ipr1 基因會調控宿主先天性免疫反應去對抗結核分枝桿菌。在sst1易感受性的巨噬細胞中,表現 Ipr1會控制結核分枝桿菌的生長,而且表現Ipr1的轉殖鼠之巨噬細胞會避免受到結核分枝桿菌感染而進行細胞壞死 (Cell necrosis) 並且轉而促進細胞凋亡 (Cell apoptosis) 。利用酵母菌雙雜交系統 (Yeast two-hybrid system) ,發現2', 5' oligoadenylate synthetase 1 (OAS1) 會和Ipr1進行交互作用。由免疫共沉澱實驗,我們分別在小鼠的J774細胞及人類HEK 293T細胞中也發現到Ipr1與 SP110 會和 OAS1 進行交互作用。小鼠的Ipr1蛋白與人類最相似的蛋白為 SP110,此 SP110 是一個主要有三種不同異構體 (Isoforms, SP110A/B/C) 的核蛋白。雖然已經知道人類的 SP110 和 OAS1 有交互作用,不過SP110會不會影響OAS1在細胞中的功能仍是未知的。到目前為止我們已成功的建立由Doxycycline誘導表現SP110A,SP110B,OAS1,以及共同表現SP110A/OAS1或SP110B/OAS1的THP-1細胞株。由免疫螢光染色實驗,我們知道SP110A/SP110B 分別會和 OAS1 共同分佈於高基氏複合體。藉由分析mRNA的含量,我們發現SP110A/OAS1細胞株有減少IFN-β mRNA表現的趨勢。而這個現象在SP110B/OAS1細胞株則沒有被觀察到。這個結果暗示我們SP110A和SP110B在調節OAS/RNase L pathway上具有不同的功能。在IFN-γ的作用下,位於細胞核的SP110A和SP110B皆有避免細胞死亡的效果;但是位於高基氏複合體的SP110A/OAS1和SP110B/OAS1則有增加細胞凋亡的傾向。這結果顯示 OAS1 可能會改變SP110異構體在細胞內的分布情形,並且可能改變SP110異構體的功能。OAS1是如何改變SP110異構體在細胞內分布情形的機制到現在還不清楚,未來可藉由分析位於高基氏複合體的SP110異構體與 OAS1複合體的結合分子,以及分析在高基氏複合體的SP110異構體和OAS1的後轉譯修飾,來釐清由SP110異構體所調控的細胞凋亡機制。 | zh_TW |
dc.description.abstract | Tuberculosis (TB) is an infectious disease mainly caused by Mycobacterium tuberculosis (Mtb) and is the second leading cause of death from an infectious disease all over the world (after HIV). Emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) and co-infection of TB patients with HIV are urgent issues of public health worldwide. It's estimated that one-third of the world's population is currently infected with Mtb, but only less than 10% of the people who are infected with Mtb turn to TB disease during their lifetime. In the previous work, a gene Ipr1 (Intracellular pathogen resistance 1), which mediated host innate immunity to Mtb infection, was identified within sst1 (Supersusceptibility to tuberculosis 1) locus on mouse chromosome 1. The expression of Ipr1 in the sst1-susceptible macrophages controlled the multiplication of Mtb in vitro, and the Ipr1 transgene prevented necrosis and facilitated apoptosis of the Mtb-infected macrophages. Using yeast two-hybrid system, 2', 5' oligoadenylate synthetase 1 (OAS1) was identified as a candidate protein interacting with mouse Ipr1. SP110, the closest human homologue of mouse Ipr1 protein, is a nuclear protein that has three major isoforms (SP110A/B/C). By co-immunoprecipitation, we found that Ipr1 interacted with OAS1 in J774 cells and that SP110 interacted with OAS1 in HEK293T cells. However, whether SP110 would affect the cellular functions of OAS1 still remains unknown. So far we have successfully generated several THP-1 clones which express SP110A, SP110B or OAS1 and clones which co-express OAS1 with SP110A or SP110B upon Doxycycline induction. By immunofluorescence staining, we figured that SP110A/SP110B and OAS1 were co-localized in the Golgi complex. By analyzing Interferon-β (IFN-β) mRNA production, we found that the interaction of SP110A and OAS1 tended to decrease the expression of IFN-β mRNA but the one of SP110B and OAS1 did not. The results implied that SP110A and SP110B may have different functions in regulating OAS/RNase L pathway. In the presence of IFN-γ stimulation, the expression of SP110A/SP110B, which were co-localized in the nucleus, prevented cell death, but co-expression of SP110A/SP110B with OAS1, which were co-localized in the Golgi complex enhanced apoptosis. The results indicated that OAS1 may change the cellular distributions of SP110 isoforms and the functions of SP110 isoforms. The mechanisms by which OAS1 changes the cellular distributions and functions of SP110 isoforms remain unknown. In the future, by identifying the molecules associated with the SP110 isoform-OAS1 complex in Golgi bodies and by determining the post-translational modifications of SP110 isoforms and OAS1 when they are co-expressed, we will elucidate the mechanisms of SP110 isoforms-mediated apoptosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:04:27Z (GMT). No. of bitstreams: 1 ntu-101-R99442021-1.pdf: 1749070 bytes, checksum: a2f954ea3e628058840b2c136ac5a95a (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Acknowledgements i
Chinese abstract ii English abstract iii Contents v List of Figures viii List of Tables ix Chapter 1 Introduction 1 1.1 Tuberculosis 1 1.2 Speckled protein 110 kDa (SP110) 2 1.3 2',5' oligoadenylate synthetase (OAS) 3 1.4 Apoptosis 4 Chapter 2 Materials and Methods 6 2.1 Cell culture 6 2.2 Cell preservation (cell freezing and thawing) 7 2.3 Lentivirus production 7 2.4 Lentivirus transduction 7 2.5 MACS analysis 8 2.6 Clone selection 8 2.7 Western blotting 9 2.7.1 Cell lysis and BCA protein assay 9 2.7.2 SDS - Polyarymide Gel Eletrophoresis (SDS-PAGE) 9 2.7.3 Transfer to PVDF membrane and Western blotting 9 2.8 Real-time PCR 11 2.8.1 RNA isolation 11 2.8.2 TURBO DNA-free treatments 11 2.8.3 First-strand cDNA synthesis 12 2.8.4 Real-time PCR standard preparation 12 2.8.5 Real-time PCR 12 2.9 Apoptosis assay 13 2.9.1 7-AAD and APC Annexin V staining for Flow Cytometric analysis 13 2.9.2 JC-1 staining for Flow Cytometric analysis 13 2.10 Immunofluorescence assay 14 Chapter 3 Results 15 3.1 Characterization of inducible stable clones 15 3.2 The IFN-β mRNA expression level of THP-1 stable clones 16 3.3 SP110A and SP110B affect the apoptosis patterns of THP-1 cells under IFN-γ-induced inflammatory environment 17 3.3.1 SP110A enhances OAS1-dependent apoptosis in THP-1 cells 17 3.3.2 SP110B enhances OAS1-dependent apoptosis in THP-1 cells 17 3.3.3 SP110 isoforms differentially regulate mitochondria-mediated apoptosis 18 3.4 The localization of SP110A, SP110B and OAS1 in THP-1 cells 18 3.4.1 Co-localization of SP110A and OAS1 in THP-1 cells 18 3.4.2 Co-localization of SP110B and OAS1 in THP-1 cells 19 3.5 SP110A and SP110B are localized in nucleolus but OAS1 is localized in the cytoplasm in THP-1 cells 19 3.6 SP110A/SP110B and OAS1 are co-localized in the Golgi complex in THP1 cells 20 3.6.1 SP110A and OAS1 are co-localized in the Golgi complex in THP-1 cells 20 3.6.2 SP110B and OAS1 are co-localized in the Golgi complex in THP-1 cells 20 Chapter 4 Discussion 21 4.1 SP110A and SP110B are co-localized with OAS1 in Golgi complex 21 4.2 SP110A and SP110B affect OAS/RNase L pathway in different manners 21 4.3 SP110A and SP110B enhance OAS1-mediated apoptosis in Golgi complex 22 4.4 Hypothesis 24 4.5 Perspective 24 Chapter 5 Figures 26 Chapter 6 Tables 38 References 40 | |
dc.language.iso | zh-TW | |
dc.title | SP110蛋白質異構體與2’-5’ Oligoadenylate Synthetase 1之交互作用 | zh_TW |
dc.title | The Interaction between SP110 Isoforms and 2’-5’Oligoadenylate Synthetase 1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳美齡,俞松良 | |
dc.subject.keyword | 核蛋白異構體,細胞凋亡, | zh_TW |
dc.subject.keyword | SP110 isoforms,OAS1,apoptosis, | en |
dc.relation.page | 44 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。