請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16175
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華 | |
dc.contributor.author | Chia-Wei Kao | en |
dc.contributor.author | 高佳薇 | zh_TW |
dc.date.accessioned | 2021-06-07T18:03:53Z | - |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-30 | |
dc.identifier.citation | Aird WC (2007a) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circulation Research 100: 158-173
Aird WC (2007b) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research 100: 174-190 Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366: 1227-1239 Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA (2011) RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 121: 43-55 Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63: 582-592 Batlouni M (2010) [Nonsteroidal anti-inflammatory drugs: cardiovascular, cerebrovascular and renal effects]. Arquivos Brasileiros de Cardiologia 94: 556-563 Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287: 2570-2581 Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovascular Research 37: 586-600 Bloomgarden ZT (1998) International Diabetes Federation meeting, 1997: nephropathy, retinopathy, and glycation. Diabetes Care 21: 1560-1566 Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820 Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615-1625 Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cellular and molecular life sciences : CMLS 59: 1117-1128 Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100: 1128-1141 Davis BL, Kuznicki J, Praveen SS, Sferra JJ (2004) Lower-extremity amputations in patients with diabetes: pre- and post-surgical decisions related to successful rehabilitation. Diabetes Metab Res Rev 20 Suppl 1: S45-50 De Caterina R (2000) Endothelial dysfunctions: common denominators in vascular disease. Curr Opin Clin Nutr Metab Care 3: 453-467 de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582: 97-105 Dinh T, Scovell S, Veves A (2009) Peripheral arterial disease and diabetes: a clinical update. Int J Low Extrem Wounds 8: 75-81 Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicologic pathology 35: 495-516 Favaro E, Miceli I, Bussolati B, Schmitt-Ney M, Cavallo Perin P, Camussi G, Zanone MM (2008) Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway. Am J Pathol 173: 442-450 Fox CS, Coady S, Sorlie PD, Levy D, Meigs JB, D'Agostino RB, Sr., Wilson PW, Savage PJ (2004) Trends in cardiovascular complications of diabetes. JAMA 292: 2495-2499 Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S (2010) Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care 33: 1585-1590 Gastaldelli A (2011) Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Diabetes Research and Clinical Practice 93 Suppl 1: S60-65 Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3: 853-876 Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339: 229-234 Hernandez-Fonseca JP, Rincon J, Pedreanez A, Viera N, Arcaya JL, Carrizo E, Mosquera J (2009) Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res 2009: 329632 Hirase T, Node K (2012) Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol 302: H499-505 Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY (2000) High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101: 2618-2624 Ido Y, Carling D, Ruderman N (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51: 159-167 Jakus V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiological research / Academia Scientiarum Bohemoslovaca 53: 131-142 Jamrozik K, Broadhurst RJ, Forbes S, Hankey GJ, Anderson CS (2000) Predictors of death and vascular events in the elderly : the Perth Community Stroke Study. Stroke 31: 863-868 Jang JH, Surh YJ (2005) Beta-amyloid-induced apoptosis is associated with cyclooxygenase-2 up-regulation via the mitogen-activated protein kinase-NF-kappaB signaling pathway. Free Radical Biology & Medicine 38: 1604-1613 Joussen AM, Poulaki V, Mitsiades N, Cai WY, Suzuma I, Pak J, Ju ST, Rook SL, Esser P, Mitsiades CS, Kirchhof B, Adamis AP, Aiello LP (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17: 76-78 Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007: 95103 Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews Drug Discovery 7: 1013-1030 Konstantinova I, Lammert E (2004) Microvascular development: learning from pancreatic islets. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology 26: 1069-1075 Li B, Wang HS, Li GG, Zhao MJ, Zhao MH (2011) The role of endoplasmic reticulum stress in the early stage of diabetic retinopathy. Acta Diabetologica 48: 103-111 Li X, Zhang L, Meshinchi S, Dias-Leme C, Raffin D, Johnson JD, Treutelaar MK, Burant CF (2006) Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55: 2965-2973 Lim M, Park L, Shin G, Hong H, Kang I, Park Y (2008) Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Annals of the New York Academy of Sciences 1150: 311-315 Lu M, Perez VL, Ma N, Miyamoto K, Peng HB, Liao JK, Adamis AP (1999) VEGF increases retinal vascular ICAM-1 expression in vivo. Investigative Ophthalmology & Visual Science 40: 1808-1812 Maric-Bilkan C, Flynn ER, Chade AR (2012) Microvascular disease precedes the decline in renal function in the streptozotocin-induced diabetic rat. Am J Physiol Renal Physiol 302: F308-315 McElroy SJ, Hobbs S, Kallen M, Tejera N, Rosen MJ, Grishin A, Matta P, Schneider C, Upperman J, Ford H, Polk DB, Weitkamp JH (2012) Transactivation of EGFR by LPS Induces COX-2 Expression in Enterocytes. PloS One 7: e38373 Nakagami H, Morishita R, Yamamoto K, Yoshimura SI, Taniyama Y, Aoki M, Matsubara H, Kim S, Kaneda Y, Ogihara T (2001) Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes 50: 1472-1481 Orasanu G, Plutzky J (2009) The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol 53: S35-42 Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annual Review of Medicine 63: 317-328 Reaven GM, Salans LB (1964) Diabetes Mellitus. A Review of Some Recent Investigations into the Nature of the Clinical Syndrome. Calif Med 100: 1-9 Richardson SJ, Willcox A, Bone AJ, Morgan NG, Foulis AK (2011) Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 33: 9-21 Robertson RP (1998) Dominance of cyclooxygenase-2 in the regulation of pancreatic islet prostaglandin synthesis. Diabetes 47: 1379-1383 Schalkwijk CG, Stehouwer CD (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond) 109: 143-159 Scheuner D, Kaufman RJ (2008) The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocrine Reviews 29: 317-333 Schmidt AM, Yan SD, Wautier JL, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation Research 84: 489-497 Scull CM, Tabas I (2011) Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 31: 2792-2797 Shanmugam N, Todorov IT, Nair I, Omori K, Reddy MA, Natarajan R (2006) Increased expression of cyclooxygenase-2 in human pancreatic islets treated with high glucose or ligands of the advanced glycation endproduct-specific receptor (AGER), and in islets from diabetic mice. Diabetologia 49: 100-107 Shen C, Li Q, Zhang YC, Ma G, Feng Y, Zhu Q, Dai Q, Chen Z, Yao Y, Chen L, Jiang Y, Liu N (2010) Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 64: 35-43 Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, Liu SH (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25: 539-545 Steele M, Stuchbury G, Munch G (2007) The molecular basis of the prevention of Alzheimer's disease through healthy nutrition. Experimental Gerontology 42: 28-36 Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW (1997) Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 34: 55-68 Thomas MC, Forbes JM, Cooper ME (2005) Advanced glycation end products and diabetic nephropathy. American Journal of Therapeutics 12: 562-572 Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25: 275-281 Tran PO, Gleason CE, Poitout V, Robertson RP (1999) Prostaglandin E(2) mediates inhibition of insulin secretion by interleukin-1beta. The Journal of Biological Chemistry 274: 31245-31248 van den Oever IA, Raterman HG, Nurmohamed MT, Simsek S (2010) Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm 2010: 792393 van der Kallen CJ, van Greevenbroek MM, Stehouwer CD, Schalkwijk CG (2009) Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver? Apoptosis : an International Journal on Programmed Cell Death 14: 1424-1434 Veves A, Backonja M, Malik RA (2008) Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain Med 9: 660-674 Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M (1994) Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proceedings of the National Academy of Sciences of the United States of America 91: 11704-11708 Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Annals of the New York Academy of Sciences 1043: 598-604 Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047-1053 Xiang Y, Li Q, Li M, Wang W, Cui C, Zhang J (2011) Ghrelin inhibits AGEs-induced apoptosis in human endothelial cells involving ERK1/2 and PI3K/Akt pathways. Cell Biochemistry and Function 29: 149-155 Yamagishi S (2009) Advanced glycation end products and receptor-oxidative stress system in diabetic vascular complications. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy 13: 534-539 Yamagishi S (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Experimental Gerontology 46: 217-224 Yamagishi S, Nakamura K, Imaizumi T (2005) Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 1: 93-106 Yamagishi S, Nakamura K, Matsui T (2006) Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy. Current Drug Discovery Technologies 3: 83-88 Yoshida H (2007) ER stress and diseases. The FEBS Journal 274: 630-658 Zanone MM, Favaro E, Camussi G (2008) From endothelial to beta cells: insights into pancreatic islet microendothelium. Current Diabetes Reviews 4: 1-9 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16175 | - |
dc.description.abstract | 糖尿病為慢性代謝異常疾病,主因為體內的胰島素分泌不足或胰島素阻抗導致體內高血糖現象。而高血糖是引發糖尿病血管併發症的原發因子,往往影響患者的生活品質並導致患者壽命減短。血管內皮功能受損被認為是糖尿病血管病變的重要致病機轉,許多研究指出,內皮細胞的凋亡導致早期糖尿病小血管病變的發生。糖化終產物,是由糖與蛋白質分子相互聚合經過一系列的反應後產生的不可還原之物質。糖尿病患者體內高血糖狀況引發糖化終產物的生成及累積,與糖尿病血管病變的進展有關。許多先前研究已證實糖化終產物會引起多種細胞的凋亡,然而其影響胰島內皮細胞之作用,尚未明瞭。因此,本篇研究利用胰島內皮細胞株 (MS1細胞),探討糖化終產物誘發胰島內皮細胞凋亡之作用機制。實驗結果得出,給予MS1細胞處理糖化終產物200 μg/ml 24小時後,細胞內磷酸化P65、環氧化酵素、cleaved caspase-3及cleaved PARP的蛋白表現增加,而細胞存活率減少24.1%,並且有MS1細胞凋亡現象。予以前處理環氧化酵素的抑制劑,抑制環氧化酵素活性,以降低前列腺素E2的產生後,糖化終產物引發之cleaved caspase-3及cleaved PARP的蛋白表現則隨之減少,並回復MS1細胞之存活率 (由70.3%回復至78.8%)。此實驗結果顯示,糖化終產物引發之胰島內皮細胞凋亡現象涉及環氧化酵素的活性激發,在糖尿病患者胰島之病變上可能扮演著一個重要的角色。 | zh_TW |
dc.description.abstract | Diabetes mellitus (DM), a metabolic disorder, is characterized by hyperglycemia and insulin resistance. Hyperglycemia has been shown to be responsible for the development and progression of diabetic vasculopathy, which result in shortened life expectancy, increased morbidity and diminished quality of life in DM patients. Endothelium dysfunction is an important pathophysiological factor in diabetic vasculopathy. Previous studies have indicated that endothelial cell apoptosis plays an important role in the development of early lesions in DM micro vasculopathy. Advanced glycation end-products (AGEs), which form and accumulate under hyperglycemia of diabetes, are implicated in the progression of diabetic vascular complications. Several studies have demonstrated that AGEs can triggered apoptosis in various kind of cells. However, there is no similar evidence in the islet-derived endothelial cells. In the present study, pancreatic islet endothelial cells (MS1 cell line) were used to investigate the cytotoxicity of AGEs. The results showed that AGEs induced P65 phosphorylation, COX-2 activation, expression of cleaved caspase-3 and cleaved PARP, reduced 24.1% cell viability, and led to cell apoptosis. Pretreatment with NS398 (COX-2 inhibitor) to inhibit PGE2 production reversed the induction of cleaved caspase-3 and cleaved PARP and MS1 cell viability. In conclusion, the experimental results provide an insight into the pathological processes taking place within the pancreatic islet endothelium caused by AGEs and suggest that induction of COX-2 activation may play an important role in the pathogenesis of islets in diabetes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:03:53Z (GMT). No. of bitstreams: 1 ntu-101-R99447003-1.pdf: 2171617 bytes, checksum: ed8d3e3f8b6b39baf5a6bbf18b7a729f (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Contents…………………………………………………………………..…………….i
中文摘要…………………………………………………….…………..……...……..iii Abstract……………………………………………………………………..…………iv Abbreviations………………………………………………….…………….………..vi CHAPTER I Introduction……………………………………….……..…………1-16 1. Diabetes mellitus (DM)…………..........……………………………..…….....1 2. Vascular complications in diabetes…..………………...……………..………...3 3. Advanced glycation end-products (AGEs)……………………………..….…10 4. Aims……………………………………………...……………..………..……16 CHAPTER II Materials and Methods…………………………..…...…...….….17-22 CHAPTER III Results…………………………………...…..……………...……23-25 1. AGEs influenced the progression of diabetes……………………….……..….23 2. AGEs reduced MS1 cell viability…………………………..……...…...…..….23 3. AGEs induced apoptosis in MS1 cells………………...………………….....…24 4. ER stress did not involve in AGEs-induced MS1 cell apoptosis…................…24 5. Exposure to AGEs increased protein expression of p-P65 and COX-2………..24 6. COX-2 mediated AGEs-induced MS1 cell apoptosis……………………….…25 CHAPTER IV Discussion…………………………..……………..……….…….26-29 Figures…………………………………………….………………….……..…….30-40 Supplementary Figures…………….…………………….………….……..………..41 References…………………………………….……………………………..…….42-48 | |
dc.language.iso | en | |
dc.title | 糖化終產物引發胰島內皮細胞凋亡之機制探討 | zh_TW |
dc.title | The mechanism of advanced glycation end-products on apoptosis of pancreatic islet endothelial cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀,楊榮森,姜至剛,陳敞牧 | |
dc.subject.keyword | 糖化終產物,細胞凋亡,胰臟胰島內皮細胞, | zh_TW |
dc.subject.keyword | Advanced glycation end-products (AGEs),cell apoptosis,pancreatic islet endothelial cells, | en |
dc.relation.page | 48 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。