請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16141
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單秋成(Chow-Shing Shin) | |
dc.contributor.author | Chu-Wei Wang | en |
dc.contributor.author | 王楚崴 | zh_TW |
dc.date.accessioned | 2021-06-07T18:02:35Z | - |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | [1]沈育霖,單秋成, “複合材料及光纖感測器之應用研究”,工業安全衛生, 第187卷,第9-24頁, (2005)
[2]王楚明, “含缺口複合材料之損傷行為研究”,台灣大學機械工程研究所,博士論文, (2001). [3]W.J. Cantwell and J. Morton., “Detection of impact damage in CFRP laminates”, Compos. Struct., Vol.3, No. 3-4, pp.241-257, (1985). [4]W.J. Canwell, P.T. Curtis and J. Morton, “Impact and subsequent fatigue damage growth in carbon fibre laminates”, Int. J. Fatigue, Vol.6, No.2, pp.113-118, (1984). [5]T.A. Shoup and J.G. Miller, “Ultrasonic characterization of fatigue and impact damage in graphite epoxy composite laminates”, Ultrasonic symposium, pp.960-964, (1982). [6]M.P. Hentschel, K.W. Harbich and A. Lange, “X-Ray Refraction Topography of Impact Damage of CFRP Laminates”, NDT&E Int., Vol.27, No.5, pp.275-280, (1994). [7]E. Udd, “Fiber optic smart structures”, Proc. IEEE, Vol.84, No.1, pp.60-67, (1996). [8]李成謙, “以塑膠光纖、光纖光柵量測混凝土早期溫、溼度之研究” ,逢甲大學土木工程研究所,碩士論文, (2008). [9]B. Gholamzadeh and H. Nabovati, “Fiber optic sensors”, 42th World Acad. Sci. Eng. Tech., pp.297-307, (2008). [10]R.D. Turner, T. Valis, W.D. Hogg and R.M. Measures, “Fiber-optic strain sensors for smart structures”, J. Intell. Mater. Syst. Struct., Vol. 1, pp.26-49, (1990). [11]曾映諮, “微型光纖壓力感測器研發與應用”,國立台灣大學機械工程研究所,碩士論文, (2008). [12]徐進鴻, “以極化差異法與PXI平台改善分佈式布里淵光纖感測系統”,國立台灣大學應用力學研究所,碩士論文, (2010). [13]沈育霖, “光纖感測器簡介”,勞工安全簡訊第72期, 第4-9頁, (2005). [14]葉天傑, “外力式長週期與統式短週期光纖光柵的特性分析及實驗量測”,國立台灣大學機械工程研究所,碩士論文, (2002). [15]K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask”, Appl. Phys. Lett., Vol.62, No.10, pp.1035-1037, (1993). [16]林志郎, “微結構材料的光-機械應用: 1)光纖布拉格光柵感測器 2)雷射趨動高分子微感測器” ,台灣大學機械工程研究所,博士論文, (2004). [17]H. Ohno, H. Naruse, M. Kihara and A. Shimada, “Industrial applications of the BOTDR optical fiber strain sensor”, Opt. Fiber Tech., Vol.7, pp.45-64, (2001). [18]B. Shi., H. Sui, J. Liu, and D. Zhang, “The BOTDR-based distributed monitoring system for slope engineering”, IAEG, No.683, pp.1-5, (2006). [19]X.F. Zhang, W.J. Hao, Q. Zhang, X.W. Meng, and Y.W. Han, “Development of optical fiber strain monitoring system based on BOTDR”, 10th ICEMI, pp.38-41, (2011). [20]H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber”, Appl. Opt., Vol.38, No.31, pp.6516-6521, (1999). [21]K. Hotate and M. Tanaka, “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique”, IEEE Photon. Tech. Lett., Vol.14, No.2, pp.179-181, (2002). [22]K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation”, IEICE Trans. Electron., Vol.E83-C, No.3, pp.405-412, (2000). [23]K. Hotate and S.S.L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system”, IEEE Photon. Tech. Lett., Vol.15, No.2, pp.272-274, (2003). [24]K. Hotate and K. Abe, “BOCDA fiber optic distributed strain sensing system with a polarization diversity scheme for enlargement of measurement range”, Proc. SPIE, Vol.5855, pp.591-594, (2005). [25]K.Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator”, IEEE Photon. Tech. Lett., Vol.18, No.3, pp.499-501, (2006). [26]K.Y. Song, Z.Y. He and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis”, Opt. Lett., Vol.31, No.17, pp.2526-2528, (2006). [27]K.Y. Song, Z.Y. He and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis”, J. Lightwave Tech., Vol.25, No.5, (2007). [28]張智奇, “分散式光纖布里淵散射量測系統之建置”,國立台灣大學應用力學研究所,博士論文, (2007). [29]Y.L. Shen and C.S. Shin, “Distributed sensing floor for an intelligent environment”, IEEE Sens. J., Vol.9, No.12, pp.1673-1678, (2009). [30]M. Imai, R. Nakano, T. Kono, T. Ichinomiya, S. Miura and M. Mure, “Crack detection application for fiber reinforced concrete using BOCDA-based optical fiber strain sensor”, J. Struct. Eng., Vol.136, No.8, pp.1001-1008, (2010). [31]S. Hasegawa, T. Yari, M. Toyama, K. Nagai and Y. Koshioka, “Delamination detection using embedded BOCDA optical fiber sensor”, Proc. SPIE, Vol.7647, pp.76470C-1-8, (2010). [32]R.W. Boyd, “Nonlinear optics, 2ed.”, Academic Press, USA, (2003). [33]張鈞博, “分佈式布里淵光纖感測系統於自動定位與結果判讀之研究”,國立台灣大學應用力學研究所,碩士論文, (2009). [34]N. Goldblatt, “Stimulated Brillouin scattering”, Appl. Opt., Vol.8, No.8, pp.1559-1566, (1969). [35]沈育霖, “光纖分佈式感測技術於結構安全監測之多功應用研究”,國立台灣大學應用力學研究所,博士論文, (2010). [36]G.P. Agrawal, “Nonlinear fiber optics, 3ed.”, Academic Press, USA, (2001). [37]T. Horiguchi, T. Kurashima and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers”, IEEE Photon. Tech. Lett., Vol.1, No.5, pp.107-108, (1989). [38]T. Kurashima, T. Horiguchi and M. Tateda, “Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers”, Appl. Opt., Vol.29, No.15, pp.2219-2222, (1990). [39]T. Yamauchi and K. Hotate, “Performance evaluation of Brillouin optical correlation domain analysis for fiber optic distributed strain sensing by numerical simulation”, Proc. SPIE, Vol.5589, pp.164-174, (2004). [40]李妤翎, “分佈式布里淵光纖感測系統於裂縫監測之應用”,國立台灣大學應用力學研究所,碩士論文, (2009). [41]A.R. Chamber, M.C. Mowlem and L. Dokos, “Evaluating impact damage in CFRP using fibre optic sensors”, Compos. Sci. Tech., Vol.67, pp.1235-1242, (2006). [42]D. Liu, “Impact-induced delamination-a view of bending stiffness mismatching” , J. Compos. Mater., Vol.22, pp.674-692, (1988). [43]E.K. Gamstedt and R. Talreja, “Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics”, J. Mater. Sci., Vol.34 , pp.2535-2546, (1999). [44]程品捷, “以內埋式光纖光柵感測器監測膠合修補碳纖維複合材料衝擊損傷之應用”, 台灣大學機械工程研究所,碩士論文, (2010). [45]R. Talreja, “Stiffness properties of composite laminates with matrix cracking and interior delamination”, Eng. Fract. Mech., Vol.25, No.5/6, pp.751-762, (1986). [46]B. Liu and L.B. Lessard, “Fatigue and damage-tolerance analysis of composite laminates: stiffness loss, damage-modelling, and life prediction”, Compos. Sci. Tech., Vol.51, pp.43-51, (1994). [47]楊仕偉, “以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞之應用” ,台灣大學機械工程研究所,碩士論文, (2009). [48]何彥儒, “以非破壞性測及破壞性顯微檢測對複材積層板探傷之比較分析” ,台灣大學機械工程研究所,碩士論文, (2007). [49]C.N. Chen, “光纖通信與應用”,新文京開發出版股份有限公司,台灣, (2004). [50]江家慶, “以內埋式光纖光柵感測器監測碳纖維複合材料之疲勞損傷”,台灣大學機械工程研究所,博士論文, (2005). [51]陳進福, “利用自發性布里淵散射量測不同光纖的超音波傳輸特性”,國立交通大學光電工程研究所,碩士論文, (2001). [52]R.B. Wagreich, W.A. Atia, H. Singh and J.S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett., Vol.32, No.13 , pp.1223–1224, (1996). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16141 | - |
dc.description.abstract | 碳纖維強化複合材料(Carbon fiber reinforced plastics,CFRP)具有優異的機械性質,因此在眾多領域中被大量應用,然而易受外物衝擊造成損傷。有鑑於此,當複材內部結構因受衝擊損傷時,為避免往後造成更大規模的結構破壞,如何有效地監測即為一重要議題。研究中將分佈式感測光纖內埋於複材試片中,利用布里淵光相關域分析(Brillouin optical correlation domain analysis,BOCDA)系統,控制泵波(Pump wave)與探測波(Probe wave)之間的相關性,以達到分佈式量測。
為了建立後續實驗之最佳參數,對BOCDA系統做調校與優化,使其在至少50cm之量測距離內擁有至少2cm之空間解析度。而為了探討BOCDA系統對於內埋光纖複材監測之可行性,進行複材彎曲與衝擊測試:首先,試片在一定彎曲負載內進行四點彎曲測試,發現內埋光纖之布里淵頻率漂移量(Brillouin frequency shift,BFS)會隨著彎曲負載增加有線性變化,且只會對內部產生暫時性受損情況;施予衝擊後,可由內埋光纖布里淵增益頻譜(Brillouin gain spectrum,BGS)之變化,定位出衝擊點之位置;而衝擊後疲勞測試中,可知經一定疲勞週期後,複材受損將導致內埋光纖受影響進而失去量測功能。此研究成功地利用BOCDA系統,並以超音波C-Scan驗證試片受損情況,證明其在監測複材受損上之應用潛力。 | zh_TW |
dc.description.abstract | Carbon fiber reinforced plastics (CFRP) has outstanding mechanical features and has been widely used in numerous fields. However, it is prone to foreign object impact damage. To avoid larger scale structural damage that might follow from the initial impact damages, efficient monitoring of the damaged defect has become an important issue. This study proposes to use distributed sensing optical fiber embedded in the specimen. By controlling the correlation between pump wave and probe wave in the Brillouin optical correlation domain analysis (BOCDA) system, distributed measurement can be achieved.
To establish the optimum experimental parameters, this study conducted correction and optimization to the BOCDA system which raised spatial resolution to 2 cm within at least a 50cm measuring distance. To investigate the feasibility of the embedded optical fiber for damage monitoring using BOCDA system, bending test, impact test and post-fatigue impact test of CFRP were conducted: First, the specimen was loaded in four-point bending with a range of bending load. It was found that the shift in the Brillouin frequency (BFS) of the embedded optical fiber had the linear change varying with the increment of the bending load. On removing the bending load, the spectrum returned to normal, implying that no damage has been incurred during the bending test. After impact, the impact position can be located by observing the change of the Brillouin gain spectrum (BGS) from the embedded fiber. Then, from the post-impact fatigue test, it was found that after certain fatigue cycles, the damage of the CFRP influenced the embedded fibers, making the measurement cannot be conducted. The correctness of the monitoring is cross-checked with the ultrasonic C-Scan examination. It was proved that the BOCDA system had very good potential for monitoring the damage of the CFRP. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:02:35Z (GMT). No. of bitstreams: 1 ntu-101-R99522504-1.pdf: 4603427 bytes, checksum: c1bd9a65f8d8509c087699d34ceae9ba (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 導論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法 2 1.4 論文結構 2 第二章 文獻回顧 4 2.1 光纖感測技術 4 2.1.1 光纖感測器調變機制與類型 4 2.1.2 FBG感測器 6 2.1.3 分佈式光纖感測系統 7 2.2 光纖之散射 9 2.2.1 自發性散射 9 2.2.2 布里淵散射 10 2.3 BOCDA系統介紹 11 2.3.1 BOCDA架構與基本原理 11 2.3.2 空間解析度與量測範圍 12 2.3.3 定位原理 12 2.4 複材破壞機制 13 2.4.1複材衝擊損傷 13 2.4.2 複材疲勞損傷 14 第三章 實驗設備與儀器 22 3.1 實驗設備 22 3.1.1 熱壓成形系統 22 3.1.2 深切緩給鑽石砂輪機 22 3.1.3 四點彎曲器具 22 3.1.4 衝擊試驗機 23 3.1.5 萬能材料試驗機(Material testing system,MTS) 23 3.1.6 超音波影像掃描系統(Ultrasonic imaging system) 23 3.2 BOCDA系統儀器 24 3.2.1 被動元件 24 3.2.2 分配回饋雷射二極體(DFB LD) 25 3.2.3 摻鉺光纖放大器(EDFA) 26 3.2.4 電光調變器(Electro-optic modulator,EOM) 26 3.2.5 極化控制器(Polarization controller) 27 3.2.6 衰減器(Attenuator) 27 3.2.7 Fiber Fabry-Perot可調式濾波器(FFP tunable filter) 27 3.2.8 鎖相放大器(LIA) 28 3.3 光纖相關設備 28 3.3.1 光纖接續設備 28 3.3.2 光纖拉伸裝置 29 3.3.3 光纖傳輸能量損耗量測儀器 29 第四章 實驗方法與流程 37 4.1 複材積層板製作 37 4.1.1 預浸布性質與疊層 37 4.1.2 複材積層板成化過程 37 4.1.3 複材試片 37 4.2 四點彎曲測試 38 4.2.1四點彎曲測試內埋光纖佈放位置 38 4.2.2 四點彎曲測試程序 38 4.3 衝擊後疲勞測試 39 4.3.1衝擊後疲勞測試內埋光纖佈放位置 39 4.3.2 衝擊後疲勞測試程序 39 4.4 BOCDA系統優化方法 40 4.4.1 光纖拉伸測試 40 4.4.2 極化最佳化流程 41 4.4.3 最佳探測波強度選取流程 41 4.5 BOCDA系統量測流程 41 第五章 實驗結果與討論 48 5.1 BOCDA系統參數優化 48 5.1.1 最佳調變頻率與調變深度選取 48 5.1.2 極化最佳化 50 5.1.3 最佳探測波強度選取 51 5.1.4 SMF之BGS量測 51 5.2 四點彎曲測試 52 5.3衝擊後疲勞測試 57 5.3.1衝擊高度140cm之衝擊測試 57 5.3.2 衝擊高度80cm之衝擊測試 61 5.3.3 衝擊後疲勞測試 63 第六章 結論與未來展望 107 6.1 結論 107 6.2 未來展望 108 參考文獻 110 附錄 115 | |
dc.language.iso | zh-TW | |
dc.title | 以分佈式布里淵光纖感測系統監測碳纖維複材受衝擊後內部損傷之應用 | zh_TW |
dc.title | Application of Investigating the Internal Impact Damage in Carbon Composite by Using Distributed Fiber Brillouin Scattering Measurement System | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃進光(Chin-Kwang Huang),沈育霖(Yu-Lin Shen) | |
dc.subject.keyword | 分佈式布里淵光纖感測,碳纖維強化複合材料,衝擊損傷,衝擊後疲勞,非破壞性檢測, | zh_TW |
dc.subject.keyword | Distributed fiber Brillouin scattering measurement,Carbon fiber reinforced plastics,Impact damage,Post-impact fatigue,Non-destructive detecting, | en |
dc.relation.page | 120 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。