Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(Chee Wee Liu)
dc.contributor.authorMeng-Han Tsaien
dc.contributor.author蔡孟翰zh_TW
dc.date.accessioned2021-06-07T18:02:29Z-
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationChapter1
[1] Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.45.
[2] H.J. Moller, C. Funke, M. Rinio and S. Scholz, Multicrystalline silicon for solar cells”, Thin Solid Films 487 (2005), pp. 179–187.
[3] Rech, B. and Wagner, H., 1999. Potential of amorphous silicon for solar cells. ppl. Phys. A 69, pp. 155–167.
[4] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (version 39)”, Prog. Photovolt: Res. Appl. 2012; 20:12 – 20
[5] Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, Volume 93, Issues 6-7, June 2009, Pages 670-673
[6] D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon” , Appl. Phys. Lett. 85, 4061.
Chapter 2
[1] R. R. King, R.A. Sinton, and R. M. Swanson, “Doped surface in one sun, point contact solar cells” Appl. Phys. Lett., 54 (15), pp. 1460-1462 (1989).
[2] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% Efficient Silicon Solar Cells” Appl. Phys. Lett., 55(13), pp. 1363-1365 (1989).
[3] Aberle A G 1999 Crystalline Silicon Solar Cells—Advanced Surface Passivation and Analysis (Rhodes: Bloxham and Chambers)
[4] Aberle A G and Hezel R 1997 Prog. Photovolt. 5 29
[5] Leguijt C, L¨olgen P, Eikelboom J A, Weeber A W, Schuurmans F M, Sinke W C, Alkemade P F A, Sarro P M, Maree C H M and Verhoef L A 1996 Solar Energy Mater. Solar Cells 40 297.
[6] Agnihotri O P, Jain S C, Poortmans J, Szlufcik J, Beaucarne G, Nijs J and Mertens R 2000 Semicond. Sci. Technol. 15 R29.
[7] Schmidt J, Lauinger T, Aberle A G and Hezel R 1996 Proc. 25th IEEE Photovoltaic Specialists Conf. (Washington, DC) p 413.
[8] Lenkeit B, Lauinger T, Aberle A G and Hezel R 1998 Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion (Vienna) (Ispra: European Commission) p 1434.
[9] T. Lauinger, A. G. Aberle, and R. Hezel “Comparison of Direct and Remote PECVD Silicon Nitride Films for Low Temperature Surface Passivation of P-type Crystalline Silicon,” 14th European Photovoltaic Solar Energy Conference, Barcelona, pp. 853-856, (1997)
[10] T. Lauinger, J. D. Moschner, A. G. Aberle, and R. Hezel, “Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for passivation of p-type crystalline silicon surface” J. Vac. Sci. Technol. A, 16(2), pp. 530-543, (1998)
[11] Ronald A. Sinton, Andres Cuevas, “Contactless determination of current–voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Appl. Phys. Lett. 69 (17), 21 October 1996.
[12] Jan Schmidt, Mark Kerr and Andr´es Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks” Semicond. Sci. Technol. 16 (2001) 164–170
[13] Qijin Cheng, Shuyan Xu and Kostya (Ken) Ostrikov, Controlled-bandgap silicon nitride nanomaterials: deterministic nitrogenation in high-density plasmas, J. Mater. Chem., 2010, 20, 5853–5859
[14] JOSEPH YA-MIN LEE, K. SOORIAKUMAR AND MANDAR M. DANGE, THE PREPARATION, CHARACTERIZATION AND APPLICATION OF PLASMA-ENHANCED CHEMICALLY VAPOUR DEPOSITED SILICON NITRIDE FILMS DEPOSITED AT LOW TEMPERATURES, Thin Solid Films, 203 ( 1991 ) 275-287
[15] Jiashen Wei, Poh Lam Ong, Francis E.H. Tay, Ciprian Iliescu, A new fabrication method of low stress PECVD SiNx layersfor biomedical applications, Thin Solid Films 516 (2008) 5181 – 5188
[16] J. W. OSENBACH, J. L. ZELL; W. R. KNOLLE and L. J. HOWARD, J. Appl. Phys. 67 (1990) 6830.
[17] K. R. LEE, K. B. SUNDARAM, D. C. MALOCHA, Studies on deposition parameters of silicon-nitride films prepared by a silane-nitrogen plasma-enhanced-chemicaI-vapour-deposition process nitride films prepared by a silane-nitrogen JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 5(1994) 255 259
[18] W.A.P. Claassen, W.G.J.N. Valkenburg, M.F.C. Willemsen, W.M.V.D. Wijgert, J. Electrochem. Soc. 132 (1985) 893.
[19] J. Kim, J. Hong, J. Korean Phys. Soc. 44 (2004) 479
[20] J.Y. Lee, S.H. Lee, J. Korean Phys. Soc. 45 (2004) 558.
[21] Daniel Nilsen, Ph.D Thesis; Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells
[22] Jinsu Yoo, Suresh Kumar Dhungel, Junsin Yi, Annealing optimization of silicon nitride film for solar cell application, Thin Solid Films 515 (2007) 7611 – 7614
[23] H. Mäckel and R. Lüdemann, Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation, J. Appl. Phys., Vol. 92, No. 5, 1 September 2002
[24] V. Verlaan R. Bakker, C.H.M. van der Werf, Z.S. Houweling, Y. Mai, J.K. Rath, R.E.I. Schropp, High-density silicon nitride deposited at low substrate temperature with highdeposition rate using hot wire chemical vapour deposition, Surface & Coatings Technology 201 (2007) 9285 – 9288
[25] Lianwei Wang, Ricky K. Y. Fu, Xuchu Zeng, and Paul K. Chu, W. Y. Cheung and S. P. Wong, “Damage in hydrogen plasma implanted silicon“, J. Appl. Phys., Vol. 90, No. 4, 15 August 2001
[26] International Standard, IEC 60904–3, Edition 2, 2008. Photovoltaic devices—Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. ISBN 2–8318–9705-X, International Electrotechnical Commission, April, 2008.
[27] Keiji Maeda and lkurou Umezu, Atomic microstructure and electronic properties of aSiNx:H deposited by radio frequency glow discharge, J. Appl. Phys. 70, 2745 (1991)
[28] A. Rohatgi, Fellow, IEEE, P. Doshi, J. Moschner, T. Lauinger, A. G. Aberle, and D. S. Ruby, Comprehensive Study of Rapid, Low-Cost Silicon Surface Passivation Technologies, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 5, MAY 2000
[29] Valentin D. Mihailetchi, Yuji Komatsu, and L. J. Geerligs, Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells, APPLIED PHYSICS LETTERS 92, 063510 (2008)
Chapter 3
[1] B. S. Richards, J. E. Cotter, C. B. Honsberg, and S. R. Wenham, Proceed-ings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, 15–22 September 2000 ~ IEEE, New York, 2000, p. 375
[2] H. Schro¨der, Phys. Thin Films 5, 87 ~ 1969.
[3] W.G. Lee, S.I. Woo, J.C. Kim, S.H. Choi, and K.H. Oh, “Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 237, pp. 105–111, 1994.
[4] S.R. Kurtz and R.G. Gordon, “Chemical vapor deposition of doped TiO2 thin films, ”Thin Solid Films, vol. 147, pp. 167–176, 1997.
[5] T-K. Won, S-G. Yoon, and H-G. Kim, “Compositional analysis and capacitance-voltage properties of TiO2 films by low pressure metal-organic chemical vapor deposition,” Journal of the Electrochemical Society, vol. 139, no. 11, pp. 3284–3288, 1992.
[6] P. L¨obl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films, vol. 251, pp. 72–79, 1994.
[7] Andrew F. Thomson, Swe Zin Lynn and Keith R. McIntosh, “PASSIVATION OF SILICON BY NEGATIVELY CHARGED TIO2”, 25th European Photovoltaic Solar Energy Conference and Exhibition 5th World Conference on Photovoltaic Energy Conversion, 6-10 September 2010, Valencia, Spain
[8] A.E. Feuersanger, “Titanium-dioxide dielectric films prepared by vapor reaction,”Proceedings of the IEEE, vol. 52, no. 12, pp. 1463–1465, 1964.
[9] E.T. Fitzgibbons, K.J. Sladek, and W.H. Hartwig, “TiO2 film properties as a function of processing temperature,” Journal of the Electrochemical Society, vol. 119, pp. 735–739, 1972.
[10] Bryce S. Richards, Jeffrey E. Cotter, Christiana B. Honsberg, and Stuart R. Wenham, “NOVEL USES OF TiO 2 IN CRYSTALLINE SILICON SOLAR CELLS”, 28th IEEE PVSC, 15-22 September 2000, Anchorage, Alaska.
[11] M.A. Green, Solar Cells Operating Principles, Technology and System Applications, 1982, p97
Chapter 4
[1] B. Hoex, J. Schmidt and R. Bock, P. P. Altermatt, M. C. M. van de Sanden and W. M. M. Kessels, “Excellent passivation of highly doped p-type Si surfacesby the negative-charge-dielectric Al2O3”, APPLIED PHYSICS LETTERS 91, 112107 (2007)
[2] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3”, JOURNAL OF APPLIED PHYSICS 104, 113703 (2008)
[3] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
[4] J. Benick, B. Hoex, G. Dingemans, W.M.M. Kessels, A. Richter, M. Hermle and S. W. Glunz, “HIGH-EFFICIENCY N-TYPE SILICON SOLAR CELLS WITH FRONT SIDE BORON EMITTER”, 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany
[5] J. Benick, A. Richter, T.-T. A. Li, N. E. Grant, K. R. McIntosh, Y. Ren, K. J. Weber, M. Hermle, S. W. Glunz, “EFFECT OF A POST-DEPOSITION ANNEAL ON AL 2 O 3 /SI INTERFACE PROPERTIES”, IEEE PVSC 35th (2010).
[6] T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt and R. Brende, “19.4%-EFFICIENT LARGE AREA REAR-PASSIVATED SCREEN-PRINTED SILICON SOLAR CELLS”, 26th European Photovoltaic Solar Energy Conference and Exhibition
[7] Jiun-Hong Lai, Ajay Upadhyaya, Rishi Ramanathan, Arnab Das, Keith Tate, Vijaykumar Upadhyaya, Aditya Kapoor, Chai-Wei Chen, Ajeet Rohatgi, “LARGE AREA 19.6% EFFICIENT REAR PASSIVATED SILICON SOLRAR CELLS WITH LOCAL AL BSF AND SCREEN-PRINTED CONTACTS”, 37th PVSC 2011, 001929
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16139-
dc.description.abstract由於矽晶太陽能電池的穩定性以及高轉換效率,使矽晶太陽能電池在太陽能產業上佔了極大部分,雖然此技術在量產上的結構已經發展的很完整,但是在高轉換效率的技術上能存在許多的挑戰。
本論文中,N型單晶矽基板太陽能電池的製程是利用離子佈值技術來製作射極(硼)以及背面電場(磷)。利用合適的退火條件,可以活化離子佈值中摻雜離子並且修復離子佈植所造成的損傷。本論文的研究以爐管退火為主。除此之外,因為表面鈍化對太陽能電池的開路電壓有很大的影響,為了提高太陽能電池的轉換效率,表面鈍化是個很重要的因素。因此本論文首先對表面鈍化的機制與特色做分析,並且運用不同材料設計表面鈍化層,進而利用準穩態光導量測法分析不同鈍化層的鈍化品質。在本論文分析的材料中,以氮化矽搭配氧化鋁(SiNx/Al2O3)製成的的雙層結構可以提供最佳的鈍化品質。藉由此雙層結構出色的鈍化能力,本論文中最高的效率可超過18%
zh_TW
dc.description.abstractWafer based solar cell accounts for the production of a large part in photovoltaic industry due to its stability and high efficiency. Although the technology of wafer based solar cell has been well-developed for conventional structure, there are still numerous new challenges existing for the high efficiency solar cell.
In this thesis, the fabrication process of n-type crystalline silicon solar cell is demonstrated by using ion implantation to form the boron (p+) emitter and phosphorous (n+) back surface field. By means of appropriate annealing, the implanted dopants could be activated, and the damage caused by the implantation can be repaired. Moreover, surface passivation plays an important role in promoting the efficiency of cells due to its strong dependence of open circuit voltage (Voc). Therefore, the mechanism and characteristic of surface passivation were introduced in this work. Then, different passivation layers were designed and analyzed by quasi-steady-state photoconductance and photoluminescence (QSSPC) measurement. In this work, the SiNx/Al2O3 stack layers could provide the best passivation quality. And with the excellent passivation of SiNx/Al2O3 stack layers, efficiency more than 18% is shown in this work.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:02:29Z (GMT). No. of bitstreams: 1
ntu-101-R99943061-1.pdf: 2272134 bytes, checksum: 308f8e477ea90eda74d1d54d1b6b5f50 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
Contents V
List of Figures VI
List of Tables VIII
.Chapter 1 Introduction 1
.1.1 Background and Motivation 1
.1.2 Organization 3
.Chapter 2 Fabrication of n-type crystalline Si solar cell with PECVD SiNx passivation 6
.2.1 Introduction 6
.2.2 Silicon nitride deposited by means of PECVD 8
.2.3 Optimization of PECVD deposition parameter for surface passivation 10
.2.4 The optical properties of SiNx films and the fabrication of n-type crystalline solar cell with SiNx passivation 23
.2.5 The fabrication of n-type crystalline silicon solar cell with SiO2/SiNx passivation 33
.2.6 Summary 39
.Chapter 3 Titanium Dioxide passivation layer and optimization of n-type crystalline solar cell 43
.3.1 Introduction 43
.3.2 Investigation of various surface passivation schemes and Formation 44
.3.3 The optimization of n-type crystalline solar cells 58
.3.4 Summary 64
.Chapter 4 SiNx/Al2O3 passivation stack layers and the fabrication of n-type crystalline Si solar cells with front and rear passivation 66
.4.1 Introduction 66
.4.2 Fabrication of n-type crystalline Si solar cell with Al2O3 passivation 67
.4.3 Fabrication of n-type crystalline silicon solar cell with Al2O3 passivation and rear passivation 77
.4.4 Summary 86
.Chapter 5 Summary and Future Work 88
.5.1 Summary 88
.5.2 Future works 89
dc.language.isozh-TW
dc.subjectn型矽基zh_TW
dc.subject鈍化zh_TW
dc.subject氮化矽zh_TW
dc.subject電漿加強化學氣相沉積zh_TW
dc.subjectpassivationen
dc.subjectn-type silicon baseden
dc.subjectPECVDen
dc.subjectsilicon nitrideen
dc.title表面鈍化層之分析與應用於N型矽基板太陽能電池zh_TW
dc.titleSurface Passivation on N-type Silicon Solar Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林中一(Chung-Yi Lin),林楚軒(Chu-Hsuan Lin),郭宇軒(Yu-Hsuan Kuo)
dc.subject.keywordn型矽基,鈍化,氮化矽,電漿加強化學氣相沉積,zh_TW
dc.subject.keywordn-type silicon based,passivation,silicon nitride,PECVD,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved