請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16125
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姚宗珍(Chung-Chen Jane Yao) | |
dc.contributor.author | Hsuan-Yi Hsiao | en |
dc.contributor.author | 蕭琁憶 | zh_TW |
dc.date.accessioned | 2021-06-07T18:02:00Z | - |
dc.date.copyright | 2012-09-17 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-03 | |
dc.identifier.citation | Al-Qawasmi, R. A., J. K. Hartsfield, Jr., et al. (2006). 'Root resorption associated with orthodontic force in inbred mice: genetic contributions.' Eur J Orthod 28(1): 13-19.
Andrade, I., Jr., S. R. Taddei, et al. (2009). 'CCR5 down-regulates osteoclast function in orthodontic tooth movement.' J Dent Res 88(11): 1037-1041. Auerbach, A. B., R. Norinsky, et al. (2003). 'Strain-dependent differences in the efficiency of transgenic mouse production.' Transgenic Res 12(1): 59-69. Bord, S., A. Horner, et al. (1998). 'Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone: potential roles in skeletal development.' Bone 23(1): 7-12. Bord, S., A. Horner, et al. (1996). 'Production of collagenase by human osteoblasts and osteoclasts in vivo.' Bone 19(1): 35-40. Bord, S., A. Horner, et al. (1997). 'Distribution of matrix metalloproteinases and their inhibitor, TIMP-1, in developing human osteophytic bone.' J Anat 191 ( Pt 1): 39-48. Campbell, I. K., J. A. Hamilton, et al. (2000). 'Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis.' Eur J Immunol 30(6): 1568-1575. Capelli, J., Jr., A. Kantarci, et al. (2011). 'Matrix metalloproteinases and chemokines in the gingival crevicular fluid during orthodontic tooth movement.' Eur J Orthod 33(6): 705-711. Cathcart, E. S., K. C. Hayes, et al. (1986). 'Experimental arthritis in a nonhuman primate. I. Induction by bovine type II collagen.' Lab Invest 54(1): 26-31. Chang, H. H., C. B. Wu, et al. (2008). 'MMP-3 response to compressive forces in vitro and in vivo.' J Dent Res 87(7): 692-696. Chaudhary, A. K., M. Singh, et al. (2010). 'Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck.' J Biomed Sci 17: 10. Courtenay, J. S., M. J. Dallman, et al. (1980). 'Immunisation against heterologous type II collagen induces arthritis in mice.' Nature 283(5748): 666-668. Crawley, J. N., J. K. Belknap, et al. (1997). 'Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies.' Psychopharmacology (Berl) 132(2): 107-124. deSouza, S., J. Lochner, et al. (1995). 'A novel nerve growth factor-responsive element in the stromelysin-1 (transin) gene that is necessary and sufficient for gene expression in PC12 cells.' J Biol Chem 270(16): 9106-9114. Flannelly, J., M. G. Chambers, et al. (2002). 'Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis.' Osteoarthritis Cartilage 10(9): 722-733. Fujihara, S., M. Yokozeki, et al. (2006). 'Function and regulation of osteopontin in response to mechanical stress.' J Bone Miner Res 21(6): 956-964. Gordon, J. W., G. A. Scangos, et al. (1980). 'Genetic transformation of mouse embryos by microinjection of purified DNA.' Proc Natl Acad Sci U S A 77(12): 7380-7384. Haruyama, N., A. Cho, et al. (2009). 'Overview: engineering transgenic constructs and mice.' Curr Protoc Cell Biol Chapter 19: Unit 19 10. Hembry, R. M., M. R. Bagga, et al. (1995). 'Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis.' Ann Rheum Dis 54(1): 25-32. Henneman, S., J. W. Von den Hoff, et al. (2008). 'Mechanobiology of tooth movement.' Eur J Orthod 30(3): 299-306. Ishikawa, T., F. Nishigaki, et al. (2005). 'Prevention of progressive joint destruction in adjuvant induced arthritis in rats by a novel matrix metalloproteinase inhibitor, FR217840.' Eur J Pharmacol 508(1-3): 239-247. Jiang, X., Z. Kalajzic, et al. (2005). 'Histological analysis of GFP expression in murine bone.' J Histochem Cytochem 53(5): 593-602. Kanzaki, H., M. Chiba, et al. (2006). 'Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement.' Gene Ther 13(8): 678-685. Knight, B., D. R. Katz, et al. (1992). 'Induction of adjuvant arthritis in mice.' Clin Exp Immunol 90(3): 459-465. Librach, C. L., Z. Werb, et al. (1991). '92-kD type IV collagenase mediates invasion of human cytotrophoblasts.' J Cell Biol 113(2): 437-449. Madlener, M., W. C. Parks, et al. (1998). 'Matrix metalloproteinases (MMPs) and their physiological inhibitors (TIMPs) are differentially expressed during excisional skin wound repair.' Exp Cell Res 242(1): 201-210. Malumbres, M., R. Mangues, et al. (1997). 'Isolation of high molecular weight DNA for reliable genotyping of transgenic mice.' Biotechniques 22(6): 1114-1119. Masuhara, K., T. Nakai, et al. (2002). 'Significant increases in serum and plasma concentrations of matrix metalloproteinases 3 and 9 in patients with rapidly destructive osteoarthritis of the hip.' Arthritis Rheum 46(10): 2625-2631. Mitsui, N., N. Suzuki, et al. (2006). 'Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells.' Life Sci 79(6): 575-583. Morris-Wiman, J., H. Burch, et al. (2000). 'Temporospatial distribution of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinases during murine secondary palate morphogenesis.' Anat Embryol (Berl) 202(2): 129-141. Myers, L. K., E. F. Rosloniec, et al. (1997). 'Collagen-induced arthritis, an animal model of autoimmunity.' Life Sci 61(19): 1861-1878. Palosaari, H., C. J. Pennington, et al. (2003). 'Expression profile of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in mature human odontoblasts and pulp tissue.' Eur J Oral Sci 111(2): 117-127. Pilcher, B. K., M. Wang, et al. (1999). 'Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity.' Ann N Y Acad Sci 878: 12-24. Reboul, P., J. P. Pelletier, et al. (1996). 'The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis.' J Clin Invest 97(9): 2011-2019. Ribbens, C., B. Andre, et al. (2000). 'Synovial fluid matrix metalloproteinase-3 levels are increased in inflammatory arthritides whether erosive or not.' Rheumatology (Oxford) 39(12): 1357-1365. Saarialho-Kere, U. K. (1998). 'Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers.' Arch Dermatol Res 290 Suppl: S47-54. Shin, S. J., J. I. Lee, et al. (2002). 'Tissue levels of matrix metalloproteinases in pulps and periapical lesions.' J Endod 28(4): 313-315. Sudbeck, B. D., B. K. Pilcher, et al. (1997). 'Induction and repression of collagenase-1 by keratinocytes is controlled by distinct components of different extracellular matrix compartments.' J Biol Chem 272(35): 22103-22110. Takahashi, I., K. Onodera, et al. (2006). 'Expression of genes for gelatinases and tissue inhibitors of metalloproteinases in periodontal tissues during orthodontic tooth movement.' J Mol Histol 37(8-9): 333-342. Tanaka, S., C. Hamanishi, et al. (1998). 'Factors related to degradation of articular cartilage in osteoarthritis: a review.' Semin Arthritis Rheum 27(6): 392-399. Tokumasu, F. and J. Dvorak (2003). 'Development and application of quantum dots for immunocytochemistry of human erythrocytes.' J Microsc 211(Pt 3): 256-261. Trentham, D. E., A. S. Townes, et al. (1977). 'Autoimmunity to type II collagen an experimental model of arthritis.' J Exp Med 146(3): 857-868. Utz, E. R., E. A. Elster, et al. (2010). 'Metalloproteinase expression is associated with traumatic wound failure.' J Surg Res 159(2): 633-639. Vaalamo, M., M. Weckroth, et al. (1996). 'Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds.' Br J Dermatol 135(1): 52-59. Walakovits, L. A., V. L. Moore, et al. (1992). 'Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury.' Arthritis Rheum 35(1): 35-42. Wilcox, B. D., J. A. Dumin, et al. (1994). 'Serotonin regulation of interleukin-1 messenger RNA in rat uterine smooth muscle cells. Relationship to the production of interstitial collagenase.' J Biol Chem 269(47): 29658-29664. Wu, M. Y., T. H. Lin, et al. (2012). 'Involvement of 15-lipoxygenase in the inflammatory arthritis.' J Cell Biochem 113(7): 2279-2289. Yamamoto, M., S. Mohanam, et al. (1996). 'Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro.' Cancer Res 56(2): 384-392. Ye, S. and A. M. Henney (2001). 'Detecting polymorphisms in MMP genes.' Methods Mol Biol 151: 367-375. Yoshihara, Y., H. Nakamura, et al. (2000). 'Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis.' Ann Rheum Dis 59(6): 455-461. Zheng, L., K. Amano, et al. (2009). 'Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury.' Am J Pathol 175(5): 1905-1914. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16125 | - |
dc.description.abstract | 基質金屬蛋白酶3 (MMP-3) 參與許多生理機能運作,細胞受矯正機械力刺激後可對MMP-3進行調控,但此密切關係仍有許多未明朗處。為進一步了解MMP-3受機械力調控的機制,本實驗利用先前複製出的人類MMP-3基因啟動子, 先建立『基質金屬蛋白酶3基因啟動子- 綠螢光蛋白』之基因轉殖小鼠,進入 in vivo實驗的範疇。基因轉殖小鼠建立後的實驗,大致分為三部分,1)機械力刺激:於小鼠口內牙齒施予矯正力,了解MMP-3在矯正牙齒移動時的表現位置,並嘗試以不同時間點分析螢光強度是否變化;2)發炎反應刺激: 進行膠原蛋白或佐劑誘導之關節炎 (collagen or adjuvant induced arthritis model),誘發小鼠產生關節炎,觀察小鼠腳踝關節有無綠螢光,即MMP-3產生的情形;3)修復過程:製造小鼠背部傷口,合併尾巴根部在膠原蛋白誘導之關節炎實驗中所產生的傷口,觀察傷口表層有無綠螢光反應。本研究結果顯示MMP-3在矯正牙齒周遭組織分布情況,不論門齒或臼齒,主要在張力側出現綠螢光,且位在牙周韌帶與骨頭交界處,撐開的正中顎骨縫也可見綠螢光,且第四天的螢光亮度明顯高於第三天,最弱反應的則為第七天。而本實驗中的基因轉殖鼠對膠原蛋白誘導之關節炎反應較低,觀察到第50天都未見到關節腫脹反應,另外由佐劑誘導的組別,可成功誘發關節腫脹,但切片觀察皆未見到綠螢光。尾巴傷口觀察發現,第28天有一隻小鼠在活體照射UV燈下,發現螢光反應,卸下21天的尾巴傷口切片在螢光顯微鏡下卻未能見到綠螢光。 因此矯正牙齒移動與傷口癒合在不同時間點,所產生的MMP3綠螢光之亮度也不同,有待後續實驗進一步找出最佳時間點 。 | zh_TW |
dc.description.abstract | Matrix metalloproteinase-3 (MMP-3) which degrades proteoglycans, fibronectin, laminins and gelatin in extracelluar matrix, participates in multiple physiological functions. Previously, mechanical force stimulation was found to up-regulate MMP-3 expression. To further understand the mechanism of regulation of MMP-3 by the mechanical force, we cloned the human MMP-3 gene promoter and identified its upregulation in mouse osteoblasts, and then created “mmp-3 promoter - green fluorescent protein” transgenic mouse model for in vivo test. After transgenic mice lines were established, three types of stimulation were tested for GFP expression. 1) mechanical force stimulation: applying orthodontic force on the teeth of transgenic mouse for various periods of time to detect the temporal and spatial distributions of GFP in periodontal tissue; 2) inflammatory stimulation: using collagen or adjuvant-induced arthritis (CIA) model to see if the GFP can accumulate at the ankle joints; 3) wound repair process: observing the intentionally wounded back skin and also the injection site wound in CIA model on the tail roots. The results showed the distribution of MMP-3 in periodontal tissue either at incisors or molars, the GF appeared mainly at the tension side, and located at the junction of periodontal ligament and bones, also in the distracted mid-palatal suture. The GF was brightest on the fourth day compared to the intensity on the third day which still with significant signal. But on the seventh day the signal dropped down significantly. To our surprise, CIA could not be induced in our transgenic lines, after 50 days of observation, there was no joint swelling after collagen injection. In another group of adjuvant-induced arthritis, joint swelling could be successfully induced, but no GF was detected histologically. Interestingly, strong GF on a 28-day tail wound when UV light shone on the animal was noticed in one incident, but we failed to detect GF in 21-day tail wound histological sections under fluorescence microscope. Therefore, we conclude that the mmp-3 GFP transgenic lines can successfully be used in orthodontic tooth movement and wound healing process models since localized signals with different intensity at various time points were detected. Further experiments should be performed to optimize the methods for detecting the GF signals in these various models for tracking its real time expression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:02:00Z (GMT). No. of bitstreams: 1 ntu-101-P98422003-1.pdf: 233232056 bytes, checksum: 2cec6127880b4afe31113cd9df7cc448 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝.................................................................. i
中文摘要 關鍵字................................................ ii 英文摘要 關鍵字................................................ iii 目錄.................................................................. v 圖次目錄............................................................ viii 表次目錄............................................................ x 第一章 引言....................................................... 1 1.1基質金屬蛋白酶3 (MMP-3)的多重角色.............. 1 1.2基因轉殖小鼠 (Transgenic mice)..................... 7 1.3小鼠品系選擇 – C57BL/6................................ 8 第二章 實驗目的................................................. 10 第三章 實驗材料及方法........................................ 11 3.1轉殖基因之設計............................................... 11 3.2基因轉殖鼠之基因鑑定 (Genotyping)................. 14 3.3矯正牙齒移動 (Orthodontic tooth movement, OTM)...... 15 3.4誘發小鼠之關節炎............................................ 18 3.5傷口癒合觀察.................................................. 20 3.6切片製作與觀察............................................... 21 第四章 實驗結果.................................................. 23 4.1基因轉殖鼠之篩選............................................ 23 4.2矯正牙齒移動.................................................. 23 4.3誘發小鼠之關節炎............................................ 27 4.4傷口癒合觀察.................................................. 28 第五章 討論........................................................ 29 5.1以PCR進行基因鑑定......................................... 29 5.2齒模距離測量.................................................. 29 5.3不同包埋切片對螢光觀察之影響......................... 30 5.4矯正牙齒移動與綠螢光之關聯............................ 31 5.5小鼠之關節炎.................................................. 34 5.6傷口癒合........................................................ 35 第六章 結論........................................................ 36 第七章 未來研究方向........................................... 37 參考文獻............................................................. 58 | |
dc.language.iso | zh-TW | |
dc.title | 『基質金屬蛋白酶3基因啟動子- 綠螢光蛋白』之基因轉殖小鼠經矯正施力後之螢光表現 | zh_TW |
dc.title | The induction of fluorescence by orthodontic force in MMP-3 promoter-GFP transgenic mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王繼廣,秦咸靜,張百恩,陳俊任 | |
dc.subject.keyword | 基質金屬蛋白酶,基因轉殖小鼠,矯正牙齒移動, | zh_TW |
dc.subject.keyword | Matrix metalloproteinase,Transgenic mice,Orthodontic tooth movement, | en |
dc.relation.page | 60 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-08-03 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 227.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。