Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章(Soo-Chang Pei)
dc.contributor.authorPin-Shao Linen
dc.contributor.author林品劭zh_TW
dc.date.accessioned2021-06-07T18:01:49Z-
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationREFERENCE
[1] A. Buades, B. Coll, and J.-M.Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, pp. 60–65.
[2] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2, pp. 490–530, 2005.
[3] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via nonlocal means of similar neighborhoods,” IEEE Signal Proc. Lett., vol.12, no. 12, pp. 839–842, Dec. 2005
[4] Kervrann, C.; Boulanger, J.; Coupe, P. “Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. ” Proc. Conf. Scale-Space and Variational Meth. (SSVM’ 07); Ischia, Italy. June 2007; p. 520-532.
[5] T. Brox, O. Kleinschmidt, and D. Cremers, “Efficient nonlocal means for denoising of textural patterns,” IEEE Trans. Image Process., 2007.
[6] Z. Ji, Q. Chen, Q.-S. Sun, D.-S. Xia “A moment-based nonlocal-means algorithm for image denoising,” Information Processing Letters, 109 (2009), pp. 238–1244
[7] T. Tasdizen. “Principal neighborhood dictionaries for nonlocal means image denoising,” in IEEE Transactions on Signal Processing, 18:2649–2660, 2009.
[8] Z. Ji, Q. Chen, Q.-S. Sun, and D.-S. Xia, “A moment-based nonlocal-means algorithm for image denoising,” Information Processing Letters, vol. 109, no. 23-24, pp. 1238–1244, 2009.
[9] N. Dowson and O. Salvado, “Hashed nonlocal means for rapid image filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 485–499, 2011.
[10] T. Thaipanich and C.-C. J. Kuo, “An adaptive nonlocal means scheme for medical image denoising,” SPIE Medical Imaging, San Diego, CA, USA, February 2010.
[11] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann and C. Barillot, “An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images,” IEEE Trans. on Medical Imaging, vol. 27, no. 4, pp. 425-441, Apr. 2008.
[12] P. Coupe, P. Hellier, C. Kervrann, and C. Barillot, “Bayesian non-local
means-based speckle filtering,” presented at the IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, Paris, France, May 2008.
[13] Coupe, P., Hellier, P., Kervrann, C., Barillot, C.: “Nonlocal meansbased speckle filtering for ultrasound images.” IEEE Trans. Image Process. 18(10), 2221–2229 (2009)
[14] Y. Guo, Y. Wang, T. Hou, “Speckle filtering of ultrasonic images using a modified non local-based algorithm,” Biomedical Signal Processing and Control, vol. 6, pp. 129-138, January, 2011.
[15] Z. Wang, “Rate scalable foveated image and video communications.” PhD thesis, Dept. of ECE, The University of Texas at Austin, Dec. 2001.
[16] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Processing Letters, vol. 9, pp. 81–84, Mar. 2002.
[17] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so difficult,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, vol. 4, (Orlando), pp. 3313–3316, May 2002.
[18] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, 'Image quality assessment: From error visibility to structural similarity,' IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
[19] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance in Medicine, vol. 34, no. 6, pp. 910–914, 1995..
[20] A. H. Andersen, “On the Rician distribution of noisy MRI data,” Magnetic Resonance in Medicine, vol. 36, no. 2, pp. 331–333, 1996.
[21] S. Aja-Fernandez, C. Alberola-Lopez, and C.-F. Westin, “Signal LMMSE estimation from multiple samples in MRI and DT-MRI,” in Proc. MICCAI. New York: Springer, 2007, vol. 4792, Lecture Notes Computer Science.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16122-
dc.description.abstract當醫生在為病患進行診斷時,常常需要各式各樣的醫學儀器來輔助,以增加其診斷的正確性。其中,醫學影像就是一種常被廣泛使用的輔助工具,例如:核磁共振影像(Magnetic Resonance Imaging)、超音波影像(Ultrasound Imaging)、電腦斷層掃描影像(Computed Tomography) 、正子放射型斷層掃描影像(Positron Emission Tomography)。然而,在取得醫學影像的過程中,常常伴隨著隨機雜訊的干擾,嚴重影響影像的的品質,使得後續的醫學影像分析工作困難重重,例如:切割(segmentation)、套合(registration)。因此,醫學影像的除雜訊是進行醫學影像分析工作中一項非常重要的前置作業。
非局部區域平均(Non-local Means, NLM)演算法,是近幾年來所提出非常有效的一般數位影像除雜訊方法。在此論文中,我們嘗試藉由改善非局部平均演算法,並利用主成分分析(Principal Component Analysis,PCA)為輔,提出適用於去除核磁共振影像的雷斯雜訊(Rician Noise)之有效方法。不僅可以大量降低運算複雜度,且在提升除雜訊之影像品質的同時,亦可保留更多影像細節部分。
zh_TW
dc.description.abstractThere is a variety range of medical diagnostic techniques to assist doctor in diagnosis. In fact, medical image which is often composed of low-contrast objects corrupted with random noise arising in the image acquisition process is widely used during the diagnosis of a doctor. In order to remove noise from digital medical image to improve visual quality and performance, digital medical image denoising has attached increasing attention and become a fundamental task in medical image analysis.
The recently proposed non-local means algorithm is a classical noise removal method in digital image, and the algorithm really present excellent results. Non-local means algorithm takes the advantage of the nature redundancy information in images replaces the gray value of noisy image with the average of the pixel in non-local areas. Owing to the effective denoising ability of non-local means filter, we do our utmost to make some regulations to improve the ability of the denoising scheme. In this work, we try to preserve the edge of object and speed up the algorithm while removing Rician noise from MRI.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:01:49Z (GMT). No. of bitstreams: 1
ntu-101-R99942129-1.pdf: 5226614 bytes, checksum: de52be4195da2153808195536cd35f5c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xiii
Chapter 1 Introduction 1
Chapter 2 Image Quality Assessments 3
2.1 The Classification of Image Quality Assessments 4
2.2 Peak Signal-to-Ratio (PSNR) 5
2.3 Structure Similarity (SSIM) 6
Chapter 3 Magnetic Resonance Image Denoising 13
3.1 Magnetic Resonance Imaging noise (Rician Noise) 13
3.1.1 Rcian Noise Generation 13
3.2 Rician Noise Estimation 15
3.2.1 Local Second Order Moment-based Method 15
3.2.2 Pseudo-Residual-based Method 16
3.3 Non-local Means Algorithm (NLM) 17
3.3.1 Introduction 17
3.3.2 Algorithm 18
3.3.3 Simulation results and Discussion 22
3.4 Principal Neighborhood Dictionaries Non-local Means (PND NLM) Algorithm 29
3.4.1 Introduction 29
3.4.2 Algorithm 29
3.4.3 Simulation Results and Discussion 35
3.5 Adaptive Non-local Means (ANLM) Algorithm 37
3.5.1 Introduction 37
3.5.2 Algorithm 37
3.5.3 Simulation results and Discussion 42
3.6 Preselection Adaptive Nonlocal Means Algorithm (Our Proposed Method) 50
3.6.1 Introduction 50
3.6.2 Algorithm 51
3.6.3 Simulation results and Discussion 65
Chapter 4 Fast Non-local Means Algorithm for Magnetic Resonance image denoising 68
4.1 Fast Non-local Means algorithm (FNLM) 68
4.1.1 Introduction 68
4.1.2 Algorithm 68
4.1.3 Experimentation and Discussions 70
4.2 Optimal Blockwise Non-local Means Algorithm 73
4.2.1 Introduction 73
4.2.2 Algorithm 75
4.2.3 Simulation Results and Discussion 78
Chapter 5 Conclusion and Feature Work 80
5.1 Conclusion 80
5.2 Feature Work 80
REFERENCE 81
dc.language.isoen
dc.title適用於核磁共振影像的非局部平均雜訊消除演算法zh_TW
dc.titleNon-local Means Denoising Algorithms
for Magnetic Resonance Image
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee杭學鳴,鍾國亮
dc.subject.keyword醫學影像,除雜訊,核磁共振影像,非局部平均,主成分分析,雷斯雜訊,zh_TW
dc.subject.keywordMedical Image,denoising,non-local means,magnetic resonance Imaging,Principal Component Analysis,Rician Noise,en
dc.relation.page84
dc.rights.note未授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved