Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然
dc.contributor.authorChao-An Yuen
dc.contributor.author余釗安zh_TW
dc.date.accessioned2021-06-07T18:01:43Z-
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citation[1] A. Natajaran, A. Komijani, X. Guan, A. Babakhani, and A. Hajimiri, “A 77-GHz phased-array transceiver with on-chip antennas in silicon: Transmitter and local LO-path phase shifting,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2807–2819, Dec. 2006.
[2] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409–2415, Nov. 2008.
[3] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electronics Lett., vol. 45, no. 1, pp. 57–59, Jan. 2009.
[4] M.-C. Chuang, J.-J Kuo, C.-H Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[5] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393–405, Feb. 2011.
[6] T.-N. Luo and Y.-J. E. Chen, “A millimeter-wave 90-nm CMOS self-mixing frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 563–565, Aug. 2008.
[7] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf., Feb. 2006, pp. 2472–2481.
[8] T.-M. Liu, H.-P. Chen, L.-T. Wang, J.-R. Wang, T.-N. Luo, Y.-J. Chen, S.-I. Liu, and C.-K. Sun, “Microwave resonant absorption of viruses through dipolar coupling with confined acoustic vibrations,” Appl. Phys. Lett., vol. 94, no. 4, pp. 043902–043902-3, Jan. 2009.
[9] T.-M. Liu, H.-P. Chen, S.-C. Yeh, C.-Y. Wu, C.-H. Wang, T.-N. Luo, Y.-J. Chen, S.-I. Liu, and C.-K. Sun, “Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations,” Appl. Phys. Lett., vol. 95, no. 17, pp. 173702–173702-3, Oct. 2009.
[10] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890–897, Jul. 1996.
[11] D. D. Kim, J. Kim, and C. Cho, “A 94GHz locking hysteresis-assisted and tunable CML static divider in 65nm SOI CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 460–461.
[12] R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proc. Inst. Radio Eng., vol. 27, pp. 446–456, Jul. 1939.
[13] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[14] W.-Z. Chen and C.-L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked frequency divider in 0.25 μm CMOS technology,” in Proc. Eur. Soild-State Circuits Conf., Sep. 2002, pp. 89–92.
[15] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[16] J.-C. Chien and L.-H. Lu, “40 GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 544–545.
[17] T.-N. Luo and Y.-J E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 620-625, Mar. 2008.
[18] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762–1766, Oct. 2003.
[19] P.-S. Wu, C.-H. Wang, T.-W. Huang, and H. Wang, “Compact and broadband millimeter-wave monolithic transformer balanced mixer,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3106–3114, Oct. 2005.
[20] A. Rofougaran et al., “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Tech. Dig., Feb. 1996, pp. 392–393.
[21] S. Li, I. Kipnis, and M. Ismail, “A 10-GHz CMOS quadrature LC-VCO for multirate optical applications,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1626–1634, Oct. 2003.
[22] J. C. Rudell, J.-J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9-GHz wide-band IF double conversion CMOS receiver for cordless telephone applications,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp. 2071–2088, Dec. 1997.
[23] RFMD. [Online]. Available: https://estore.rfmd.com/RFMD_OnlineStore/Products/RFMD+Parts/PID-P_RFVC1832.aspx?DC=25
[24] ADI. [Online]. Available:
http://www.analog.com/en/rfif-components/pll-synthesizersvcos/adf4007/products/product.html
[25] ADI. [Online]. Available:
http://www.analog.com/en/all-operational-amplifiers-op-amps/operational-amplifiers-op-amps/ad820/products/product.html
[26] Triquint Semiconductor. [Online]. Available:
http://www.triquint.com/products/p/TGA2706-SM
[27] Rogers Corporation. [Online]. Available: http://www.rogerscorp.com/acm/products/16/RO4000-Series-High-Frequency-Circuit-Materials-Woven-glass-reinforced-ceramic-filled-thermoset.aspx
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16119-
dc.description.abstract本篇論文提出了一個以90奈米數位CMOS製程所製作的V頻帶寬頻除四除頻器。在反饋式除頻器架構中,採用諧波混頻器能達成頻率除四之功能。電源分離和並聯峰化電感的技巧被使用在混頻器中來提高對除頻範圍舉足輕重的轉換增益。操作在1.2 伏特的電源供應下,除頻器消耗15.5毫瓦的功耗,並能產生四相位的輸出訊號。低於0 dBm的輸入功率情形下,量測的除頻範圍可達5.4 GHz。
除了寬頻除四除頻器之外,此篇論文也提出了一個破壞流感病毒微波裝置。被功率放大器增強的8 GHz微波訊號匯入天線並照射在病毒上。實際進入天線的功率增益是28 dBm。在15分中的微波照射下,H3N2流感A型病毒的死亡率可達93%。此破壞流感病毒微波裝置共消耗了7.26瓦的直流功耗。
zh_TW
dc.description.abstractThis paper presents a V-band wide-locking range divide-by-four frequency divider implemented in 90-nm digital CMOS technology. A subharmonic mixer is adopted in the regenerative divider architecture to realize the division ratio of four. The splitting supply and parallel inductive peaking techniques are applied to the mixer design to boost the conversion gain, which is the bottleneck of the divider’s locking range. Operated at 1.2 V, the frequency divider consumes 15.5 mW of power and generates four-phase output signals. The measured locking range is 5.4 GHz with the input signal power smaller than 0 dBm.
A microwave influenza virus deactivator is also presented in this thesis. The 8-GHz microwave signal amplified by the power amplifier (PA) enters an antenna to illuminate the H3N2 virus. The measured signal power fed into the antenna is 28 dBm. Under 15-minute illumination, the measured death rate of the H3N2 virus is 93%. The total DC power is 7.26 W.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:01:43Z (GMT). No. of bitstreams: 1
ntu-101-R97942085-1.pdf: 3321440 bytes, checksum: ae2e5d57ccac427f32eb87f79fa165ca (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Contents

摘要
Abstract
Chapter 1 Introduction…………………………………………………...1
1.1 Motivation…………………………………………………………….…..1
1.2 Framework of Thesis……………………………………………………….4
Chapter 2 Survey of Millimeter-Wave Frequency Divider…………….5
2.1 Millimeter-Wave Frequency Dividers………………………………………..5
2.1.1Current Mode Logic Divider…………………………………………………...5
2.1.2 Miller Divider……………………………………………….....................7
2.1.3 Injection-Locked Divider……………………………………………………..9
2.2 Techniques for Enhancing Locking Range of Injection-Locked Divider………..11
2.2.1 Series Inductive Peaking Technique……………………………………………11
2.2.2 Dual Injection Technique……………………………………………………12
2.3 Divide-by-Four Frequency Dividers………………………………………..13
2.3.1 Harmonic Injection-Locked Divider……………………………………………13
2.3.2 Self-Mixing Divider………………………………………………………..15
2.3.3 Divider Using Matching Method………………………………………………16
2.3.4 Summary………………………………………………………………..18
Chapter 3 V-band Divide-by-Four Frequency Divider……………….20
3.1 Circuit Design……………………………………………………………20
3.2 Simulation Results………………………………………………………..26
3.3 Analysis of Locking Range………………………………………………..27
3.4 Measurement Results……………………………………………………..32
Chapter 4 Microwave Influenza Virus Deactivator…………………...36
4.1 Background……………………………………………………………...36
4.2 Block Diagram and System Specification…………………………………...37
4.3 System Design and Implementation………………………………………...38
4.4 Measurement Results……………………………………………………..44
Chapter 5 Conclusion……………………………………………………50
References………………………………………………………………..52
dc.language.isoen
dc.titleV頻帶除四之除頻器與破壞流感病毒手持微波裝置zh_TW
dc.titleV-band Divide-by-Four Frequency Divider and Hand-Held Microwave Device for Influenza Virus Deactivationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱煥凱,陳筱青,蔡政翰
dc.subject.keyword除頻器,鎖定範圍,毫米波,除四,流感,H3N2,zh_TW
dc.subject.keyworddivider,locking range,millimeter-wave,divide-by-four,influenza,H3N2,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved