Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16117
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張俊哲(Chun-che Chang)
dc.contributor.authorGee-way Linen
dc.contributor.author林季瑋zh_TW
dc.date.accessioned2021-06-07T18:01:38Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationAbdelhaleem, M. (2005). RNA helicases: regulators of differentiation. Clin Biochem 38, 499-503.
Andersen, C. L., Jensen, J. L. and Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64, 5245-5250.
Anderson, R., Copeland, T. K., Scholer, H., Heasman, J. and Wylie, C. (2000). The onset of germ cell migration in the mouse embryo. Mech Dev 91, 61-68.
Anne, J. (2010). Targeting and anchoring Tudor in the pole plasm of the Drosophila oocyte. PLoS One 5, e14362.
Asaoka-Taguchi, M., Yamada, M., Nakamura, A., Hanyu, K. and Kobayashi, S. (1999). Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol 1, 431-437.
Blackman, R. L. (1974). Life-cycle variation of Myzus-persicae (Sulz) (Aphididae) in different parts of world, in eelation to genotype and environment. B Entomol Res 63, 595-607.
Blackman, R. L. (1987). Chapter 3. Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P, Minks AK, Harrewijn P. Aphids: their biology, natural enemies and control. Amsterdam: Elsevier 2A, 163–195.
Braat, A. K., Zandbergen, T., van de Water, S., Goos, H. J. and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216, 153-167.
Braendle, C., Davis, G. K., Brisson, J. A. and Stern, D. L. (2006). Wing dimorphism in aphids. Heredity 97, 192-199.
Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. (2000). A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122.
Brisson, J. A. and Stern, D. L. (2006). The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays 28, 747-755.
Cardinali, M., Gioacchini, G., Candiani, S., Pestarino, M., Yoshizaki, G. and Carnevali, O. (2004). Hormonal regulation of vasa-like messenger RNA expression in the ovary of the marine teleost Sparus aurata. Biol Reprod 70, 737-743.
Chang, C. C., Dearden, P. and Akam, M. (2002). Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev Biol 252, 100-118.
Chang, C. C., Lee, W. C., Cook, C. E., Lin, G. W. and Chang, T. (2006). Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. Int J Dev Biol 50, 413-421.
Chang, C. C., Lin, G. W., Cook, C. E., Horng, S. B., Lee, H. J. and Huang, T. Y. (2007). Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev Genes Evol 217, 275-287.
Chang, C. C., Huang, T. Y., Cook, C. E., Lin, G. W., Shih, C. L. and Chen, R. P. Y. (2009). Developmental expression of Apnanos during oogenesis and embryogenesis in the parthenogenetic pea aphid Acyrthosiphon pisum. Int J Dev Biol 53, 169-176.
Chang, C. C., Huang, T. Y., Shih, C. L., Lin, G. W., Chang, T. P., Chiu, H. and Chang, W. C. (2008). Whole-mount identification of gene transcripts in aphids: Protocols and evaluation of probe accessibility. Arch Insect Biochem 68, 186-196.
Cordin, O., Banroques, J., Tanner, N. K. and Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene 367, 17-37.
Cote, J. and Richard, S. (2005). Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280, 28476-28483.
Dahanukar, A., Walker, J. A. and Wharton, R. P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell 4, 209-218.
Davis, G. K. (2012). Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. J Exp Zool 00, 1-12.
Dawes, R., Dawson, I., Falciani, F., Tear, G. and Akam, M. (1994). Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561-1572.
Dearden, P. K. (2006). Germ cell development in the Honeybee (Apis mellifera); vasa and nanos expression. BMC Dev Biol 6, 6.
Dearden, P. K. and Wilson, M. J. (2009). Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Dev Biol 335, 276-287.
de la Cruz, J., Kressler, D. and Linder, P. (1999). Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24, 192-198.
Deshpande, G., Calhoun, G., Jinks, T. M., Polydorides, A. D. and Schedl, P. (2005). Nanos downregulates transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos. Mech Develop 122, 645-657.
Dill, K. K. and Seaver, E. C. (2008). Vasa and nanos are coexpressed in somatic and germ line tissue from early embryonic cleavage stages through adulthood in the polychaete Capitella sp I. Dev Genes Evol 218, 453-463.
Ditton, H. J., Zimmer, J., Rajpert-De Meyts, E. and Vogt, P. H. (2004). The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet 13, 2333-2341.
Dixon, A. F. G. (1998). Aphid ecology (2nd edn). Chapman & Hall.
Donnell, D. M., Corley, L. S., Chen, G. and Strand, M. R. (2004). Caste determination in a polyembryonic wasp involves inheritance of germ cells. Proc Natl Acad Sci USA 101, 10095-10100.
Eddy, E. M. (1975). Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43, 229-280.
Ephrussi, A. and Lehmann, R. (1992). Induction of germ cell formation by oskar. Nature 358, 387-392.
Ewen-Campen, B., Schwager, E. E. and Extavour, C. G. M. (2010). The molecular machinery of germ line specification. Mol Reprod Dev 77, 3-18.
Extavour, C. G. and Akam, M. (2003). Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130, 5869-5884.
Extavour, C. G., Pang, K., Matus, D. Q. and Martindale, M. Q. (2005). vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 7, 201-215.
Fabioux, C., Pouvreau, S., Le Roux, F. and Huvet, A. (2004). The oyster vasa-like gene: a specific marker of the germline in Crassostrea gigas. Biochem Biophys Res Commun 315, 897-904.
Foresta, C., Ferlin, A. and Moro, E. (2000). Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet 9, 1161-1169.
Gallot, A., Shigenobu, S., Hashiyama, T., Jaubert-Possamai, S. and Tagu, D. (2012). Sexual and asexual oogenesis require the expression of unique and shared sets of genes in the insect Acyrthosiphon pisum. BMC Genomics 13, 76.
Gruidl, M. E., Smith, P. A., Kuznicki, K. A., McCrone, J. S., Kirchner, J., Roussell, D. L., Strome, S. and Bennett, K. L. (1996). Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 93, 13837-13842.
Gustafson, E. A. and Wessel, G. M. (2010). Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32, 626-637.
Gustafson, E. A., Yajima, M., Juliano, C. E. and Wessel, G. M. (2011). Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Dev Biol 349, 440-450.
Hagan, H. R. (1951). Embryology of the viviparous insects. Part II: Embryogenesis. New York: Ronald Press. 356-392.
Hales, D. F., Tomiuk, J., Wohrmann, K. and Sunnucks, P. (1997). Evolutionary and genetic aspects of aphid biology. Eur J Entomol 94, 1-55.
Handel, K., Grunfelder, C. G., Roth, S. and Sander, K. (2000). Tribolium embryogenesis: a SEM study of cell shapes and movements from blastoderm to serosal closure. DevGenes Evol 210, 167-179.
Hashimoto, H., Hara, K., Hishiki, A., Kawaguchi, S., Shichijo, N., Nakamura, K., Unzai, S., Tamaru, Y., Shimizu, T. and Sato, M. (2010). Crystal structure of zinc-finger domain of Nanos and its functional implications. Embo Rep 11, 848-853.
Hay, B., Jan, L. Y. and Jan, Y. N. (1988a). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577-587.
Hay, B., Ackerman, L., Barbel, S., Jan, L. Y. and Jan, Y. N. (1988b). Identification of a component of Drosophila polar granules. Development 103, 625-640.
Heie, O. E. (1987). Chaper 6 Evolution. Paleontology and phylogeny. In: Minks AK, Harrewijn P, editors. Aphids: their biology, natural enemies and control. World crop pests. Amsterdam: Elsevier 2A 367–391.
Huang, T. Y., Cook, C. E., Davis, G. K., Shigenobu, S., Chen, R. P. Y. and Chang, C. C. (2010). Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. Insect Mol Biol 19, 75-85.
Ishikawa, A., Hongo, S. and Miura, T. (2008). Morphological and histological examination of polyphenic wing formation in the pea aphid Acyrthosiphon pisum (Hemiptera, Hexapoda). Zoomorphology 127, 121-133.
Ishikawa, A., Ogawa, K., Gotoh, H., Walsh, T. K., Tagu, D., Brisson, J. A., Rispe, C., Jaubert-Possamai, S., Kanbe, T., Tsubota, T., Shiotsuki, T., and Miura, T. (2011). Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Mol Biol 21, 49-60.
Jaubert-Possamai, S., Le Trionnaire, G., Bonhomme, J., Christophides, G. K., Rispe, C. and Tagu, D. (2007). Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7, 63.
Johannsen, O. A. and Butt, F. H. (1941). Embryology of insects and myriapods. Part II, Chapter 16, Homoptera, Aphididae. New York: McGraw-Hill Book Co., Inc., 259-268.
Johnstone, O. and Lasko, P. (2004). Interaction with eIF51B is essential for Vasa function during development. Development 131, 4167-4178.
Juliano, C. and Wessel, G. (2010). Versatile germline genes. Science 329, 640-641.
Juliano, C. E., Swartz, S. Z. and Wessel, G. M. (2010). A conserved germline multipotency program. Development 137, 4113-4126.
Kadyrova, L. Y., Habara, Y., Lee, T. H. and Wharton, R. P. (2007). Translational control of maternal cyclin B mRNA by nanos in the Drosophila germline. Development 134, 1519-1527.
Kanbe, T. and Akimoto, S. (2009). Allelic and genotypic diversity in long-term asexual populations of the pea aphid, Acyrthosiphon pisum in comparison with sexual populations. Mol Ecol 18, 801-816.
Khila, A. and Abouheif, E. (2008). Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proc Natl Acad Sci USA 105, 17884-17889.
Khila, A. and Abouheif, E. (2010). Evaluating the role of reproductive constraints in ant social evolution. Philos Trans R Soc Lond B Biol Sci 365, 617-630.
Kirino, Y., Vourekas, A., Kim, N., Alves, F. D., Rappsilber, J., Klein, P. S., Jongens, T. A. and Mourelatos, Z. (2010). Arginine methylation of Vasa protein is conserved across phyla. J Biol Chem 285, 8148-8154.
Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H. and Nusslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149, 875-888.
Kobayashi, S., Yamada, M., Asaoka, M. and Kitamura, T. (1996). Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380, 708-711.
Kotaja, N., Bhattacharyya, S. N., Jaskiewicz, L., Kimmins, S., Parvinen, M., Filipowicz, W. and Sassone-Corsi, P. (2006). The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103, 2647-2652.
Kugler, J. M., Woo, J. S., Oh, B. H. and Lasko, P. (2010). Regulation of Drosophila vasa in vivo through paralogous Cullin-RING E3 ligase specificity receptors. Mol Cell Biol 30, 1769-1782.
Kunwar, P. S., Siekhaus, D. E. and Lehmann, R. (2006). In vivo migration: a germ cell perspective. Annu Rev Cell Dev Biol 22, 237-265.
Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Takamatsu, K., Chuma, S., Kojima-Kita, K., Shiromoto, Y., Asada, N., Toyoda, A., Fujiyama, A., Totoki, Y., Shibata, T., Kimura, T., Nakatsuji, N., Noce, T., Sasaki, H., and Nakano, T. (2010). MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 24, 887-892.
Kuznicki, K. A., Smith, P. A., Leung-Chiu, W. M., Estevez, A. O., Scott, H. C. and Bennett, K. L. (2000). Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127, 2907-2916.
Lantz, V. A., Clemens, S. E. and Miller, K. G. (1999). The actin cytoskeleton is required for maintenance of posterior pole plasm components in the Drosophila embryo. Mech Develop 85, 111-122.
Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P. and Hogan, B. L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13, 424-436.
Linder, P. (2006). Dead-box proteins: a family affair-active and passive players in RNP-remodeling. Nucleic Acids Res 34, 4168-4180.
Linder, P. and Lasko, P. (2006). Bent out of shape: RNA unwinding by the DEAD-Box helicase vasa. Cell 125, 219-221.
Linder, P., Lasko, P. F., Ashburner, M., Leroy, P., Nielsen, P. J., Nishi, K., Schnier, J. and Slonimski, P. P. (1989). Birth of the D-E-A-D box. Nature 337, 121-122.
Liu, N., Dansereau, D. A. and Lasko, P. (2003). Fat facets interacts with vasa in the Drosophila pole plasm and protects it from degradation. Curr Biol 13, 1905-1909.
Liu, N. K., Han, H. and Lasko, P. (2009). Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3 ' UTR. Gene Dev 23, 2742-2752.
Lynch, J. A., El-Sherif, E. and and Brown, S. J. (2012). Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WIREs Dev. Biol. 1, 16-39.
Lynch, J. A. and Desplan, C. (2010). Novel modes of localization and function of nanos in the wasp Nasonia. Development 137, 3813-3821.
Megosh, H. B., Cox, D. N., Campbell, C. and Lin, H. F. (2006). The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol. 16, 1884-1894.
Mito, T., Nakamura, T., Sarashina, I., Chang, C. C., Ogawa, S., Ohuchi, H. and Noji, S. (2008). Dynamic expression patterns of vasa during embryogenesis in the cricket Gryllus bimaculatus. Dev Genes Evol 218, 381-387.
Miura, T., Braendle, C., Shingleton, A., Sisk, G., Kambhampati, S. and Stern, D. L. (2003). A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J Exp Zool B (Mol Dev Evol) 295, 59-81.
Miya, K. (1958). Studies on the embryonic development of the gonad in the silkworm, Bombyx mori L. I. Differentiation of germ cells. J Faculty Agriculture, Iwate University 3, 436–467.
Mochizuki, K., Nishimiya-Fujisawa, C. and Fujisawa, T. (2001). Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211, 299-308.
Moran, N. A. (1992). The evolution of aphid life-cycles. Annu Rev Entomol 37, 321-348.
Mutti, N. S., Park, Y., Reese, J. C. and Reeck, G. R. (2006). RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6, 38.
Mutti, N. S., Louis, J., Pappan, L. K., Pappan, K., Begum, K., Chen, M. S., Park, Y., Dittmer, N., Marshall, J., Reese, J. C. et al. (2008). A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc Natl Acad Sci USA 105, 9965-9969.
Nakao, H. (1999). Isolation and characterization of a Bombyx vasa-like gene. Dev Genes Evol 209, 312-316.
Nakao, H., Hatakeyama, M., Lee, J. M., Shimoda, M. and Kanda, T. (2006). Expression pattern of Bombyx vasa-like (BmVLG) protein and its implications in germ cell development. Dev Genes Evol 216, 94-99.
Nelson, J. A. (1915). The embryology of the Honeybee. Princeton, Princeton University Press.
Orsborn, A. M., Li, W., McEwen, T. J., Mizuno, T., Kuzmin, E., Matsumoto, K. and Bennett, K. L. (2007). GLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5. Development 134, 3383-3392.
Osborne, P. and Dearden, P. K. (2005). Non-radioactive in-situ hybridisation to honeybee embryos and ovaries. Apidologie 36, 113-118.
Oyama, A. and Shimizu, T. (2007). Transient occurrence of vasa-expressing cells in nongenital segments during embryonic development in the oligochaete annelid Tubifex tubifex. Dev Genes Evol 217, 675-690.
Pek, J. W. and Kai, T. (2011). A role for vasa in regulating mitotic chromosome condensation in Drosophila. Curr Biol 21, 39-44.
Pfister, D., De Mulder, K., Hartenstein, V., Kuales, G., Borgonie, G., Marx, F., Morris, J. and Ladurner, P. (2008). Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol 319, 146-159.
Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J. and Hogenhout, S. A. (2011). Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6, e25709.
Pokrywka, N. J. and Stephenson, E. C. (1991). Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis. Development 113, 55-66.
Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1, REVIEWS1017.
Rebscher, N., Zelada-Gonzalez, F., Banisch, T. U., Raible, F. and Arendt, D. (2007). Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306, 599-611.
Reynolds, N., Collier, B., Maratou, K., Bingham, V., Speed, R. M., Taggart, M., Semple, C. A., Gray, N. K. and Cooke, H. J. (2005). Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet 14, 3899-3909.
Rocak, S. and Linder, P. (2004). Dead-box proteins: The driving forces behind RNA metabolism. Nat Rev Mol Cell Bio 5, 232-241.
Saba, R., Suzuki, A., Suzuki, H., Sada, A. and Saga, Y. (2009). Nanos2 regulates the transcriptome in the embryonic male germ cells. Mech Develop 126, S280-S280.
Sabater-Munoz, B., Legeai, F., Rispe, C., Bonhomme, J., Dearden, P., Dossat, C., Duclert, A., Gauthier, J. P., Ducray, D. G., Hunter, W., Dang, P., Kambhampati, S., Martinez-Torres, D., Cortes, T., Moya, A., Nakabachi, A., Philippe, C., Prunier-Leterme, N., Rahbe, Y., Simon, J. C., Stern, D. L., Wincker, P., and Tagu, D. (2006). Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biol 7, R21.
Saffman, E. E. and Lasko, P. (1999). Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55, 1141-1163.
Santos, A. C. and Lehmann, R. (2004). Germ cell specification and migration in Drosophila and beyond. Curr Biol 14, R578-589.
Schaner, C. E., Deshpande, G., Schedl, P. D. and Kelly, W. G. (2003). A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5, 747-757.
Schroder, R. (2006). vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum. Dev Genes Evol 216, 277-283.
Schulte-Merker, S., Ho, R. K., Herrmann, B. G. and Nusslein-Volhard, C. (1992). The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021-1032.
Schupbach, T. and Wieschaus, E. (1986). Maternal-effect mutations altering the anterior-posterior aattern of the Drosophila embryo. Roux Arch Dev Biol 195, 302-317.
Sengoku, T., Nureki, O., Nakamura, A., Satoru, K. I. and Yokoyama, S. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila vasa. Cell 125, 287-300.
Shakesby, A. J., Wallace, I. S., Isaacs, H. V., Pritchard, J., Roberts, D. M. and Douglas, A. E. (2009). A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39, 1-10.
Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K. and Agata, K. (1999). Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206, 73-87.
Shigenobu, S., Bickel, R. D., Brisson, J. A., Butts, T., Chang, C. C., Christiaens, O., Davis, G. K., Duncan, E. J., Ferrier, D. E. K., Iga, M., Janssen, R., Lin, G. W., Lu, H. L., McGregor, A. P., Miura, T., Smagghe, G., Smith, J. M., van der Zee, M., Velarde, R. A., Wilson, M. J., Dearden, P. K., Stern, D. L. (2010). Comprehensive survey of developmental genes in the pea aphid, Acyrthosiphon pisum: frequent lineage-specific duplications and losses of developmental genes. Insect Mol Biol 19, 47-62.
Shingleton, A. W., Sisk, G. C. and Stern, D. L. (2003). Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development. BMC Dev Biol 3, 7.
Shukalyuk, A. I., Golovnina, K. A., Baiborodin, S. I., Gunbin, K. V., Blinov, A. G. and Isaeva, V. V. (2007). vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda : Crustacea : Cirripedia : Rhizocephala). Cell Biol Int 31, 97-108.
Simon, J. C., Rispe, C. and Sunnucks, P. (2002). Ecology and evolution of sex in aphids. Trends Ecol Evol 17, 34-39.
Spike, C., Meyer, N., Racen, E., Orsborn, A., Kirchner, J., Kuznicki, K., Yee, C., Bennett, K. and Strome, S. (2008). Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Genetics 178, 1973-1987.
Steinhauer, J. and Kalderon, D. (2006). Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn 235, 1455-1468.
Styhler, S., Nakamura, A. and Lasko, P. (2002). VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev Cell 3, 865-876.
Subramaniam, K. and Seydoux, G. (1999). nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126, 4861-4871.
Sugimoto, K., Koh, E., Sin, H. S., Maeda, Y., Narimoto, K., Izumi, K., Kobori, Y., Kitamura, E., Nagase, H., Yoshida, A. et al. (2009). Tissue-specific differentially methylated regions of the human VASA gene are potentially associated with maturation arrest phenotype in the testis. J Hum Genet 54, 450-456.
Swartz, S. Z., Chan, X. Y. and Lambert, J. D. (2008). Localization of vasa mRNA during early cleavage of the snail Ilyanassa. Dev Genes Evol 218, 107-113.
Tanaka, E. D. and Hartfelder, K. (2009). Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees. Genet MolBiol 32, 582-593.
Tanaka, T. and Nakamura, A. (2011). Oskar-induced endocytic activation and actin remodeling for anchorage of the Drosophila germ plasm. Bioarchitecture 1, 122-126.
Tautz, D. and Pfeifle, C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81-85.
Tsai-Morris, C. H., Sheng, Y., Lee, E., Lei, K. J. and Dufau, M. L. (2004). Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. P Natl Acad Sci USA 101, 6373-6378.
The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8, e1000313.
Van Doren, M., Broihier, H. T., Moore, L. A. and Lehmann, R. (1998). HMG-CoA reductase guides migrating primordial germ cells. Nature 396, 466-469.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.
Via, S. (1992). Inducing the sexual forms and hatching the eggs of pea aphids. Entomol Exp Appl 65, 119-127.
Wang, Z. and Lin, H. F. (2004). Nanos maintains germline stem cell self-renewal by preventing differentiation. Science 303, 2016-2019.
Wu, H. R., Chen, Y. T., Su, Y. H., Luo, Y. J., Holland, L. Z. and Yu, J. K. (2011). Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 353, 147-159.
Wylie, C. (2000). Germ cells. Curr Opin Genet Dev 10, 410-413.
Yajima, M. and Wessel, G. M. (2011a). The multiple hats of Vasa: its functions in the germline and in cell cycle progression. Mol Reprod Dev 78, 861-867.
Yajima, M. and Wessel, G. M. (2011b). The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin. Development 138, 2217-2222.
Yoon, C., Kawakami, K. and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3165.
Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y. and Howard, K. (1997). The Drosophila protein Wunen repels migrating germ cells. Nature 385, 64-67.
Zhurov, V., Terzin, T. and Grbic, M. (2004). Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432, 764-769.
Zissler, D. (1992). From egg to pole cells: ultrastructural aspects of early cleavage and germ cell determination in insects. Microsc Res Tech 22, 49-74.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16117-
dc.description.abstract在昆蟲中,生殖細胞在胚胎發育的過程中與體細胞分離,是生殖細胞特化相當重要的一步。部分的物種如黃果蠅,生殖細胞在發育早期即與體細胞分離。黃果蠅胚後端的核在細胞化時,囊括了聚集於胚後端的生殖細胞決定物質,而被特化成為生殖前驅細胞;其他的物種如蝗蟲,生殖前驅細胞在原腸胚形成後才與體細胞分離,且推測生殖細胞的特化是透過其鄰近的體細胞釋放出訊息誘導而成。上述生殖細胞的研究成果,都是透過偵測 vasa 基因的表現,因為 vasa 基因保守表現於各種動物的生殖細胞中,成為最好的生殖細胞標記基因。
本論文的研究當中,我選殖出豌豆蚜的四個 vasa 同源基因,製備分別辨識其蛋白的四個抗體,偵測四個 vasa 基因訊息 RNA 以及蛋白在發育過程中的表現。旨在探討無性和有性的豌豆蚜胚胎,其生殖細胞如何特化。以及同一基因體在不同光週期的刺激之下,能產生無性胚胎或有性胚胎的可塑性,是否受到四個 vasa 基因差異性的表現來調控。
研究結果顯示,無性胚胎和有性胚胎都是藉由同一個 Vasa 蛋白來特化其生殖細胞。不過,無性胚胎中,Vasa 蛋白聚集於胚後端,並會在生殖細胞特化之前向前端位移。Vasa 蛋白聚集的位移可能是現今無性且胎生的蚜蟲才出現的特徵。這個假設需透過分析較原始的蚜蟲物種,其具有無性生殖且卵生的世代才能驗證。除此之外,蚜蟲 Vasa 蛋白在胚後端聚集的分子機制是否和其它昆蟲有共通性,以及蚜蟲四個 vasa 基因的功能性分析,都需要繼續探討。
zh_TW
dc.description.abstractSegregation of germline from soma during embryogenesis is critical to the specification of germ cells in insects. In some species such as the fruit fly Drosophila melanogaster, germ cells are segregated during early development. It has been reported that in D. melanogaster the posterior syncytial nuclei are associated with the maternally inherited germline determinants in the egg posterior to form the primordial germ cells (PGCs) at the beginning of embryogenesis. In some other species like the grasshopper Schistocerca gregaria, segregation of PGCs is first identified after gastrulation and germline specification may be achieved via signal induction from neighboring somatic cells. Discoveries of germline segregation mentioned above were all evidenced by the expression of vasa, a highly conserved germline marker in insects and other animals.
In this study, I cloned four vasa genes (Apvasa1-4) in the pea aphid Acyrthosiphon pisum, made antibodies against ApVasa1-4, and detected the developmental expressions of Apvasa mRNAs and ApVasa proteins. My ultimate goals are to understand how germline is specified in asexual and sexual pea aphids and whether reproductive plasticity of the pea aphid is regulated by differential expressions of four vasa genes from the same genome.
My results show that only one germline specific Vasa protein to specify PGCs in asexual and sexual embryos. The localization of germline specific Vasa protein is dymanic in asexual embryo, in which accumulated Vasa protein shifts its position toward anterior of embryo. I suggest that the dynamic localization of Vasa protein in asexual embryo is a derived feature in modern aphids, which are viviparous in asexual phase. This hypothesis has to be confirmed by analyzing the localization of Vasa protein in ancient asexual and oviparous aphids. Besides, the conserved mechanism for the localization of germline specifc Vasa in aphids across other insects, and the functional assay of four vasa genes are also necessary to be done.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:01:38Z (GMT). No. of bitstreams: 1
ntu-101-D95632002-1.pdf: 42573414 bytes, checksum: 234cdd7252f174f0c701c8745d3f7ac9 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要.................................................................................................... i
Abstract.................................................................................................... ii
Abbreviations............................................................................................ iv
Table of contents...................................................................................... vii

Chapter 1. General introduction
1.1 Germline development 1
Strategies of germline segregation 1
Modes of germline specification 2
1.2 Germline marker genes, vasa and nanos 3
Vasa is a member of DEAD-box protein family 4
Functions of Vasa protein in germline 5
The zinc-finger protein, Nanos 7
1.3 Characterization of germline specification mode with expression of vasa in
insects 7
1.4 Biology of aphid 10
The annul life cycle of aphids 10
Developmental plasticity of aphids 11
Evolution of reproductive phases in aphids 12
The strians of the pea aphid in this study 13
1.5 Specific aims 14
Chapter 2. Germline development in the asexual embryos of viviparous pea
aphid
2.1 Background 15
The molecular network for germ plasm assembly 16
Embryonic development of asexual embryos in the viviparous aphids 16
Germline development in the asexual embryos of viviparous aphids 17
Germline specification in the asexual embryos of viviparous pea aphid 18
Germline migration in model organisms 18
2.2 Materials and methods 19
The asexual pea aphid culture 19
Cloning of the pea aphid vasa (Apvasa1) and nanos (Apnanos) genes 19
Synthesis of Apvasa1 and Apnanos in situ riboprobes 21
Whole-mount in situ hybridization in the asexual embryos 22
2.3 Results 23
Probe accessibility of whole-mount in situ hybridization 25
Apvasa1 RNA probes traced the germline migration in the asexual embryos 25
Apnanos marked the presumptive primodium germ cells and germ cells in the
gonads 26
2.4 Discussion 28
Figures in Chapter 2 29
Figure 2.1 Whole-mount in situ of Apvasa1 on the early asexual embryos 30
Figure 2.2 Whole-mount in situ of Apvasa1 on asexual embryos after stage 7
onward 31
Chapter 3. Differential expressions of four vasa homologs Apvasa1 to
Apvasa4 during asexual embryogenesis
3.1 Background 32
3.2 Materials and methods 33
The asexual pea aphid culture 33
Cloning of the other pea aphid vasa (Apvasa2 to 4) genes 33
Making of anti-ApVasa1 to 4 antibodies 33
Western blot analysis 34
Whole-mount immunolabeling of the asexual embryos 34
3.3 Results 35
Molecular characterization of vasa homologues in the pea aphid 35
Expression of Apvasa1 to 4 RNA during asexual embryogenesis 36
Dynamic localization of ApVasa1 protein in the posterior to specify germline
during early asexual embryogenesis 38
Specified primodium germ cells were marked with ApVasa1 antibody during
asexual embryogenesis 40
Other three ApVasa proteins were not germline specific in the asexual
embryos 40
ApVasa1 antibody cross-reacted with the green peach aphid Myzus persica Vasa
protein in germline 41
3.4 Discussion 42
Figures and Tables in Chapter 3 44
Figure 3.1 Alignments of the pea aphid Vasa protein sequences 45
Figure 3.2 Schematic comparisons between the pea aphid Vasa proteins,
insect Vasa proteins, and the pea aphid non-Vasa DEAD-box proteins 47
Figure 3.3 Whole-mount in situ hybridization of Apvasa1 to 4 on asexual
early stage of embryos (stage 0 to 5) 48
Figure 3.4 Whole-mount in situ hybridization of Apvasa1 to 4 on asexual
early stage of embryos (stage 6 to 11) 50
Figure 3.5 Whole-mount in situ hybridization of Apvasa1 to 4 on asexual
mid stage of embryos (stage 11 to 14) 51
Figure 3.6 Whole-mount in situ hybridization of Apvasa1 to 4 on asexual
late stage of embryos (stage 15 to 19) 53
Figure 3.7 Increasing intensities of Apvasa3 transcripts in non-germline
cells on asexual early to mid stages of embryos (stage 5 to 10) 56
Figure 3.8 Accumulation of ApVasa1 protein in the posterior of oocytes in
the asexual aphids (stage 0 to 1) 58
Figure 3.9 Accumulation of ApVasa1 protein in the posterior of oocytes in
the asexual aphids (stage 1 to 2) 59
Figure 3.10 Accumulation of ApVasa1 protein in the posterior of asexual
embryos (stage 3) 60
Figure 3.11 Dynamic posterior localization of ApVasa1 protein in the asexual
embryos (stage 4) 62
Figure 3.12 Presumptive PGCs are specified by recruitment of posteriorly
localized ApVasa1 protein in the asexual embryos (stage 5 to 6) 64
Figure 3.13 Germline development is traced by ApVasa1 antibody during
asexual embryogenesis (stage 7 to 19) 66
Figure 3.14 Improvement of whole-mount immunostaining on elder stages of
asexual embryos 68
Figure 3.15 Migrating germline is stably detected by ApVasa1 antibody in
the all stages of asexual embryos after proteinase K treatment (stage 9 to 19) 69
Figure 3.16 Developmental expressions of ApVasa2 to 4 antibodies during
asexual embryogenesis (stage 0 to 12) 70
Figure 3.17 ApVasa1 antibody cross-reacted with the green peach aphid
Myzus persica Vasa protein in germline during asexual embryogenesis 71
Figure 3.18 Western blot of ApVasa1 to 4 fusion proteins with ApVasa1 to 4
antibodies 72
Figure 3.19 Western blot of the pea aphid ovary proteins in the asexual phase
with ApVasa1 to 4 antibodies 73
Table 3.1 Primers for RACE PCR 74
Table 3.2 Primers for making in situ of Apvasa1 to 4 constructs 74
Table 3.3 Primers for cloning ApVasa1 to 4 fusion proteins as antigens 74
Chapter 4. Germline development in the sexual eggs of the pea aphid
4.1 Background 75
Embryogenesis within the sexual eggs of the pea aphid 75
Germline development during embryogenesis within the sexual eggs of the
pea aphid 77
4.2 Materials and methods 77
Induction for sexual phase of the pea aphid 77
Fixation, dissection and immunostaining of the sexual eggs 78
RNA extraction and real-time quantitative PCR 80
Western blot analysis 81
4.3 Results 81
Maternal expressions of Apvasa1 ot 4 during oogenesis in the sexual females 81
Accumulation of ApVasa1 protein in the posterior of syncytial embryos
within the sexual eggs specified their germline 82
Germline development during embryogenesis within the sexual eggs 82
Differential expression of Apvasa1 to 4 in the sexual phase 83
4.4 Discussion 84
Posteriorly localized ApVasa1 and aggregation of ApVasa4 as nuage were conserved in both reproductive phases 84
ApVasa3 was specific assembled on the oocyte nucleus of sexual females 85
The mode of germline specification and the recruitment of ApVasa1 protein
were conserved both in asexual and sexual phases 85
Figures in Chapter 4 87
Figure 4.1 Schedule of the induction for sexual phase 88
Figure 4.2 Maternal expressions of ApVasa1 to 4 proteins during oogenesis
in the sexual females 89
Figure 4.3 Accumulation of ApVasa1 protein in the posterior of syncytial
embryos within sexual eggs 91
Figure 4.4 ApVasa1protein is recruited in the presumptive PGCs within the
sexual eggs 92
Figure 4.5 Germline development is closed associated with bacteria during
early gastrulation of embryos within the sexual eggs 93
Figure 4.6 Germline development within the sexual eggs after 3 days AEL
onward 95
Figure 4.7 Western blots of protein extracts in the sexual phase with
ApVasa1 to 4 antibodies 97
Figure 4.8 Quantitative real-time PCR of differential expressions of
Apvasa1 to 4 98
Figure 4.9 Quantitative real-time PCR of differential expressions of
Apvasa1 to 4 among ovaries from different stages of sexual instars 99
Chapter 5. Discussion
5.1 A comparison of germline development in asexual and sexual phase 100
The posteriorly localized Vasa protein is conserved for germline specification
in asexual and sexual phase of the pea aphid 101
Migration of extra-embryonic germline is divergent within the asexual egg
chambers and sexual eggs 101
Evolution of Vasa proteins assembly in the presumptive germ plasm within
aphids 102
Comparison of germline specification among insects 103
5.2 Expressions and functions of Vasa in non-germline 104
Expression sof Vasa in non-germline 104
Functions of Vasa in multipotent cells 105
Differential expressions of multiple vasa genes 105
5.3 Accessibility of functional assay for vasa genes in aphids 107
The interaction of Vasa with RNAi pathway 108
5.4 Regulation of vasa expression in germline 109
5.5 Future aspects 110
Figure in Chapter 5 111
Figure 5.1 Germline specification in insects 112
References 113
Appendix
Appendix 1.1 Strategies of germline segregation 123
Appendix 1.2 Localization of germline specification molecules across the Metazoa 124
Appendix 1.3 Function motifs and protein structure of Vasa 125
Appendix 1.4 Expression of Vasa protein in the locust Schistocerca embryos 126
Appendix 1.5 The annul life cycle of the pea aphid 127
Appendix 2.1 Germ plasm assembly in Drosophila oocyte 128
Appendix 2.2 Embryogenesis of asexual and viviparous aphids 129
Appendix 2.3 Staging scheme of the asexual embryos in the pea aphid 130
Appendix 2.4 Germline specification in the asexual embryos 132
Appendix 2.5 Publication: Whole-mount identification of gene transcripts in aphids:
protocals and evaluation probe accessibility.
Appendix 2.6 Publication: Apvasa marks germ-cell migration in the parthenogenetic
pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea)
Appendix 2.7 Publication: Developmental expression of Apnanos during oogenesis
and embryogenesis in the parthenogebetic pea aphid Acyrthosiphon pisum.
Appendix 4.1 Embryonic development of the sexual eggs in the grain aphid
T. graminum 133
Appendix 4.2 Embryogenesis within the sexual eggs in the first two weeks of the pea
aphid 134
Appendix 4.3 Embryogenesis within the sexual eggs after two weeks of the pea aphid 136
dc.language.isoen
dc.title由 vasa 基因表現探討豌豆蚜生殖細胞發育之可塑性zh_TW
dc.titleDevelopmental plasticity of germline development in the pea aphid Acyrthosiphon pisum: implicated by vasa expressionsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭保麟,路光暉,陳俊宏,李士傑,林明德
dc.subject.keyword豌豆蚜,生殖前驅細胞,生殖細胞特化,Vasa,生殖的可塑性,無性胚胎,有性胚胎,zh_TW
dc.subject.keywordpea aphid,PGCs,germline specification,Vasa,reproductive plasticity,asexual embryo,sexual embryo.,en
dc.relation.page137
dc.rights.note未授權
dc.date.accepted2012-08-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
41.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved