請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16109完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李致毅(Jri Lee) | |
| dc.contributor.author | Yu-Lun Chen | en |
| dc.contributor.author | 陳昱綸 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:01:21Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-04 | |
| dc.identifier.citation | [1] Jri Lee et al., 'A Low-Power Fully Integrated 60GHz Transceiver System with OOK Modulation and On-Board Antenna Assembly,' IEEE International Solid-State Circuits Conference, pp. 316-317, Feb. 2009.
[2] H. Wang et al., 'A 60-GHz FSK Transceiver with Automatically-Calibrated Demodulator in 90-nm CMOS,' IEEE Symposium on VLSI Circuits, pp. 95-96, June 2010. [3] S. Huang et al., 'An 87GHz QPSK Transceiver with Costas-Loop Carrier Recovery in 65nm CMOS,' IEEE International Solid-State Circuits Conf., pp. 168-169, Feb. 2011. [4] Y. Li et al., 'A Fully-Integrated 77GHz FMCW Radar System in 65nm CMOS,' IEEE International Solid-State Circuits Conf., pp. 216-217, Feb. 2010. [5] L. Yujiri et al., “Passive mm-Wave Imaging,” IEEE Microwave Magazine, vol.4, issue 3, pp. 39-50, Sept. 2003. [6] V. Jain et al., “A 22–29-GHz UWB Pulse-radar Receiver Front-end in 0.18-μm CMOS,”IEEE Trans. Microwave Theory and Techniques, vol. 57, pp. 1903–1914, Aug. 2009. [7] R. Kulke et al., “24 GHz Radar Sensor Integrates Patch Antenna and Frontend Module in Single Multilayer LTCC Substrate,” in Proc. Eur. Microelectronics and Packaging Conf., pp. 239–242, Jun. 2005. [8] T. H. Ho et al., “A Compact 24 GHz Radar Sensor for Vehicle Sideway Looking Applications,” in Proc. Eur. Microwave Conf., Oct. 2005, pp.351–354. [9] M. Schneider, “Automotive Radar—Status and Trends,” in Proc. German Microwave Conf., Apr. 2005, pp. 144–147. [10] “Allocations and service rules for the 71–76 GHz, 81–86 GHz, and 92–95 GHz bands,” FCC Notice of Proposed Rule Making 02-180, Jun. 2002. [11] J. Wells, “Faster Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine, vol. 10, issue 3, pp. 104-112, May 2009. [12] S. V. Voingescu et al., “SiGe BiCMOS and CMOS Transceiver Blocks for Automotive Radar and Imaging Applications in the 80-160 GHz Range,” in “Analog Circuit Design,” Springer, 2008. [13] A. M. Niknejad, “Electromagnetics for High-Speed Analog and Digital Communication Circuits”, New York: Cambridge University Press, Mar. 2007. [14] H. Casier et al., “Analog Circuit Design: Sensors, Actuators and Power Drivers; Integrated Power Amplifiers from Wireline to RF; Very High Frequency Front Ends”, Netherlands: Springer, 2008. [15] C.H. Doan et al., “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 144-155, Jan. 2005. [16] B. Heydari et al., “A 60-GHz 90-nm CMOS Cascode Amplifier with Interstage Matching,” IEEE Microwave Integrated Circuit Conf., pp. 88-91, Oct. 2007. [17] C.K, Liang and B. Razavi, “Systematic Transistor and Inductor Modeling for Millimeter-Wave Design,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 450-457, Feb. 2009. [18] D. Chowdhury, et al., “A 60GHz 1V +12.3dBm Transformer-Coupled Wideband PA in 90nm CMOS,” IEEE International Solid-State Circuits Conf., pp. 560-561, Feb. 2008. [19] S.T. Nicolson and S.P. Voinigescu, “Methodology for Simultaneous Noise and Impedance Matching in W-band LNAs, “IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 279-282, Nov. 2006. [20] B. Razavi, “RF Microelectronics,” Prentice Hall, Oct. 2012. [21] J. R. Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE Journal Solide-State Circuits, vol. 35, pp. 1368-1383, Sep. 2000. [22] D. Pozar, “Microwave Engineering,” John Wiley & Sons, Inc., Feb. 2004. [23] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design,” Prentice Hall, Aug. 1997. [24] S. Cripps, “RF Power Amplifiers for Wireless Communications,” Artech House, May 2006. [25] T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits,” United Kingdom: Cambridge University Press, Dec. 2003. [26] M. Bohsali, et al., “Current Combining 60GHz CMOS Power Amplifiers,” Radio Frequency Integrated Circuits Symposium, pp. 31-34, Jun. 2009. [27] C. Law, et al., “A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS,” IEEE International Solid-State Circuits Conf., pp. 426-427, Feb. 2010. [28] Y. Jiang, et al., “A W-Band Medium Power Amplifier in 90 nm CMOS”, IEEE Microwave and Wireless Components Letters, pp. 818-820, Dec. 2008. [29] M. Boers, “A 60GHz Transformer Coupled Amplifier in 65nm Digital CMOS,” Radio Frequency Integrated Circuits Symposium, pp. 343-346, May. 2010. [30] I. Aoki, et al., “Fully Integrated CMOS Power Amplifier Design Using the Distributed Active-Transformer Architecture”, IEEE Journal of Solid-State Circuits, vol. 37, pp. 371-383, Mar. 2002. [31] D. Chowdhury et al., “Transformer-Coupled Power Amplifier Stability and Power Back-Off Analysis,” IEEE Trans. Circuits Systems II: Express Briefs, vol. 55, pp. 507-511, June 2008. [32] T. Chang, et al., 'A 77 GHz power amplifier using transformer-based power combiner in 90 nm CMOS,' IEEE Custom Integrated Circuits Conference, pp.1-4, Sep. 2010. [33] Suzuki, et al., '60 and 77GHz Power Amplifiers in Standard 90nm CMOS,' IEEE International Solid-State Circuits Conf., pp.562-636, 3-7 Feb. 2008. [34] A. Komijani and A. Hajimiri, “A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon,” IEEE Journal of Solid-State Circuits, pp. 1749–1756, Aug. 2006. [35] B. Yishay, et al., 'A high gain wideband 77GHz SiGe power amplifier,' IEEE Radio Frequency Integrated Circuits Symposium, pp.529-532, May 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16109 | - |
| dc.description.abstract | 隨著製程不斷的演進,互補式金屬氧化物半導體製程的電流增益截止頻率已大於150-GHz,使得互補式金屬氧化物半導體製程上也可以實現毫米波頻段的電路;矽製程的高整合的高整合和低成本的優勢,再搭配毫米波頻段的各種特性,矽製程在毫米波系統的應用將愈來愈廣泛。但互補式金屬氧化物半導體製程具有些先天上的一些缺陷,諸如低操作電壓、低崩潰電壓與高損耗被動元件等缺點,將使得以互補式金屬氧化物半導體製程實現高效能的毫米波電路為一非常困難的課題。有鑑於此,論文中將提出電路技巧減緩此些製程缺點所造成的障礙,同時並以實際晶片之量測結果加以驗證。
功率放大器為無線收發系統中重要元件之一,功率放大器使用於傳輸機的輸出級,提供足夠的能量供天線輻射信號。本論文將探討毫米波頻段的功率放大器設計。首先論文將討論主動以及被動元件在高頻段設計時須考量的課題,並簡單介紹一些功率放大器的基本原理和設計考量。最後提出一個操作於77-GHz的之功率放大器,以65奈米互補式金屬氧化半導體製程製作。電路採用傳輸線作為其匹配電路以及採變壓器形式的功率合成器來與增進輸出功率。根據量測結果,在1.0伏特的操作偏壓,在77-GHz可達到 27.3-dB的小訊號功率增益、輸出1-dB壓縮功率值為8.5-dBm、最大輸出功率為12.9-dBm。操作偏壓在1.2伏特時,在77-GHz可達到 27.9-dB的小訊號功率增益、輸出1-dB壓縮功率值為10.2-dBm、最大輸出功率為14.6-dBm。此電路驗證互補式金屬氧化物半導體製程技術確實可實現高功率輸出之毫米波功率放大器並與矽鍺製程技術相當的性能。 | zh_TW |
| dc.description.abstract | With the continued scaling of silicon CMOS technology, the unity gain cut-off frequency of CMOS transistors is above 200-GHz, which provides opportunities for circuits operating at millimeter-wave band. Silicon technology has advantages such as high integration and low cost. Utilizing a variety of characteristics of millimeter-wave band, applications for millimeter-wave systems in silicon technologies will be more and more popular. Nevertheless, the CMOS technology possesses some inherent disadvantages, such as its low supply voltage, low breakdown voltage, and large loss of on-chip passive components, so it is difficult to realize the high performance CMOS circuits for the millimeter-wave applications. In this thesis, RF circuit techniques are presented to alleviate those bottlenecks and provide the experimental results to verify the functionality.
Power amplifiers are one of the most critical elements in wireless transceiver nowadays. They are utilized at the output stage of a transmitter to provide sufficient power for antenna to radiate electromagnetic energy. In this thesis, we focus the on the design of millimeter-wave power amplifier. At the beginning, we discuss the design and analysis of active and passive components at higher frequencies, and briefly introduce some basic theory and design considerations for RF power amplifiers. Next, a 77-GHz power amplifier in 65-nm standard digital CMOS technology for automotive radar and point-to-point communication applications is presented. This circuit employs transmission lines as its matching networks and the transformer power combiner to improve the output saturation power. According to the experimental results, the proposed power amplifier achieves 27.3-dB small signal gain, 8.5-dBm output 1-dB compression point and 12.9-dBm saturated output power at 1.0-V operation. When it is operated at 1.2-V, it achieves 27.9-dB small signal gain, 10.2-dBm output 1-dB compression point and 14.6-dBm saturated output power. This work has demonstrated that CMOS technology is appropriate for the millimeter-wave power amplifier for high output power applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:01:21Z (GMT). No. of bitstreams: 1 ntu-101-R99943030-1.pdf: 4049796 bytes, checksum: 0ef1d73d144198b8d919c9320755acd4 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 CMOS in Millimeter-Wave 1 1.2 Research Motivation 2 1.2.1 Automotive Radar 4 1.2.2 Point-to-Point Communication 5 1.3 Organization of Thesis 7 Chapter 2 Analysis and Design of Active and Passive Devices for Millimeter-Wave Integrated Circuit Design 8 2.1 Challenge of mm-Wave Integrated Circuit Design 8 2.2 Active Devices 10 2.2.1 Amplifier Topology 13 2.2.2 Modeling and Layout Consideration 15 2.3 Passive Devices 16 2.3.1 Inductor 17 2.3.2 Capacitor 18 2.3.3 Transmission Line 21 2.3.4 Transformer 24 Chapter 3 Fundamentals of Power Amplifier Design 28 3.1 Millimeter-Wave Amplifier Design 28 3.2 Power Amplifier Theory 31 3.2.1 Load-Pull 31 3.2.2 Load-line Theory 32 3.2.3 Linearity 33 3.2.4 Gain Compression 34 3.3 Design Considerations of Power Amplifiers 37 3.3.1 Classification of Power Amplifiers 38 3.3.2 Output Power 38 3.3.3 Power Gain 39 3.3.4 Efficiency 39 3.3.5 Numbers of Stage 40 3.3.6 Single-Ended and Differential Operations 40 3.3.7 Chip Area 41 Chapter 4 An E-band Power Amplifier Using Transformer Combining Technique 42 4.1 Amplifier Architecture 42 4.2 Device Sizing 44 4.3 Amplifier Design 45 4.4 Bypass Network 45 4.5 Power Combining Techniques 47 4.6 A Mathematical Analysis of Power Combining 51 4.7 Circuit Performance 53 4.8 Measurement Setup and Results 55 Chapter 5 Conclusion 59 BIBLIOGRAPHY 60 | |
| dc.language.iso | en | |
| dc.subject | 功率放大器 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 功率合成技術 | zh_TW |
| dc.subject | CMOS | en |
| dc.subject | millimeter-wave | en |
| dc.subject | power amplifier | en |
| dc.subject | power combining techniques | en |
| dc.title | 應用於車用雷達與點對點通訊系統之互補式金屬氧化物半導體毫米波功率放大器 | zh_TW |
| dc.title | A Millimeter-Wave Power Amplifier in CMOS for Automotive Radar and Point-to-Point Communication System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂學士(Shey-Shi Lu),盧信嘉(Hsin-Chia Lu) | |
| dc.subject.keyword | 互補式金屬氧化物半導體,毫米波,功率放大器,功率合成技術, | zh_TW |
| dc.subject.keyword | CMOS,millimeter-wave,power amplifier,power combining techniques, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
