Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16091
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorYi-Hsiang Chuangen
dc.contributor.author莊壹翔zh_TW
dc.date.accessioned2021-06-07T18:00:43Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] E. Yablonovitch, “ Inhibited spontaneous emission in solid-state physics and electronic, ” Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, “ Strong localization of photons in certain disordered dielectric superlattices, ” Phys. Rev. Lett. 58, 2486 (1987).
[3] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “ A dielectric omnidirectional reflector, ” Science 27, 5394 (1998).
[4] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals- Molding the Flow of Light 2nd ed., Princeton University Press, New Jersey (1995).
[5] Igor A. Sukhoivanov, Igor V. Guryev, Photonic Crystals -Physics and Practical Modeling, Springer-Verlag, Heidelberg (2009).
[6] A. David, H. Benisty and C. Weisbuch, “ Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape, ” Phys. Rev. B 73, 075107 (2006).
[7] M. Plihal, A. Shambrook, A. A. Maradudin and Ping Sheng, “ Two-dimensional photonic band structures, ” Opt. Commun. 80, 199 (1991).
[8] M. Plihal and A. A. Maradudin, “ Photonic band structure of two-dimensional systems: The triangular lattice, ” Phsy. Rev. B, 44, 8565 (1991).
[9] M. Qiu and S. He, “ Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap, ” J. Opt. Soc. Am. B, 17, 1027 (2000).
[10]Z. Li and Y. Xia, ” Omnidirectional absolute band gaps in two-dimensional photonic crystals, ” Phys. Rev. B. 64, 153108 (2001).
[11]T. Haas, A. Hesse, T. Doll, “ Omnidirectional two-dimensional photonic crystal
band gap structures, ” Phys. Rev. Lett. 73, 045130 (2006).
[12]K. M. Ho, C. T. Chan, and C. M. Souloulis, “ Existence of a photonic gap in periodic dielectric structures, ” Phys. Rev. Lett. 65, 3152 (1990).
[13]P. R. Villeneuve and M. Piche, “ Photonic band gaps in two-dimensional square and hexagonal lattices, ” Phys. Rev. B. 46, 4969 (1992).
[14]P. R. Villeneuve and M. Piche, “ Photonic band gaps in two-dimensional square lattices: Square and circular rods, ” Phys. Rev. B. 46, 4973 (1992).
[15]D. Cassagne, C. Jouanin, and D. Bertho, “ Photonic band gaps in a two-dimensional graphite structure, ” Phys. Rev. B. 52, R2217 (1995).
[16]D. Cassagne, C. Jouanin, and D. Bertho, “ Hexagonal photonic-band-gap structures, ” Phys. Rev. B. 53, 7134 (1995).
[17]C. M. Anderson and K. P. Giapis, “ Larger two-dimensional photonic band gaps, ” Phys. Rev. Lett. 77, 2949 (1996).
[18]Z. Y. Li, “Large absolute band gap in 2D anisotropic photonic crystals, ” Phys. Rev. Lett. 81, 2574 (1998).
[19]X. H. Wang, “ Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices, ” Phys. Rev. B. 60, 11417 (1999).
[20]L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “ Light transport through the band-edge states of fibonacci quasicrystals, ” Phys. Rev. Lett. 90, 055501 (2003).
[21]Y. S. Chan, C. T. Chan and Z. Y. Liu, “ Photonic band gaps in two dimensional
photonic quasicrystals, ” Phys. Rev. Lett. 80, 956 (1998).
[22]L. Moretti and V. Mocella , “ Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence, ” Opt.Express, 15, 15314 (2007).
[23]Y. Trabelsi and M. Kanzari, “ Two-dimensional deterministic photonic band gap structures based on the quasiperiodic sequences at millimeter wave frequencies, ”
IJEST , 3, 6784 (2011).
[24]L. Moretti, I. Rea, L. Rotiroti, I. Rendina, G. Abbate, A. Marino, and L. De Stefano, “ Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon, ” Opt. Express, 14, 6264 (2006).
[25]H. Lei, J. Chen, G. Nouet, S. Feng, Q. Gong, and X. Jiang, “ Photonic band gap structures in the Thue-Morse lattice, ” Phys. Rev. B, 75, 205109 (2007).
[26]X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, “ Photonic band gaps and localization in the Thue–Morse structures, ” Appl. Phys. Lett. 86, 201110 (2005).
[27]K. Ueda, T. Dotera, and T. Gemma, “ Photonic band structure calculations of two-dimensional Archimedean tiling patterns, ” Phys. Rev. B, 75, 195122 (2007).
[28]J. Kepler, E. J. Aiton, A. M. Duncan and J. V. Field, The Harmony of the World, American Philosophical Society, Philadelphia (1997).
[29]欒丕綱, 陳啟昌, 光子晶體, 五南圖書出版公司 (2005).
[30]C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, USA (2005).
[31]L. Wu, F. Zhuang, and S. He, “ Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps, ” Phys.Rev. E, 67, 026612 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16091-
dc.description.abstract本文主要以平面波展開法討論二維系統中的不同結構、不同元素變化對於光子晶體全方向能隙所產生的影響。首先,對於二維系統的光子晶體其基本理論做介紹以及平面波展開法在光子晶體能帶分析中的運作方式,而後利用平面波展開法針對不同晶格以及元素探討其不同的能隙特性。而對於每種不同的參數設定,可以發現在其中具有一些相似性及趨勢,而這些特性可以提供在設計元件上很大的助益,能針對不同性能需求很快的找到發生全方向能隙的參數設定。在二維光子晶體中,較典型的晶格型狀可以分為方形晶格、三角形晶格以及蜂巢狀晶格;在結構方面,也可以分成是柱狀或是孔洞結構;極化方式可以分為TE mode以及TM mode;在元素選擇方面,分別討論圓形元素、方形元素以及六角形元素。再來,對於近年來蓬勃發展的複雜形式的單位晶胞定義形式介紹,以及其能帶結構的討論。最後則是提出結論以及未來展望的部分。zh_TW
dc.description.abstractThe main purpose of this thesis is to observe and discuss the results obtained by changing different structures and elements of two-dimensional photonic crystals using plane wave expansion method (PWEM). First, the basic introduction of photonic crystals and method of calculating the band structures by PWEM will be presented. Then, the discussion of results of different structures and different elements will be introduced. For all kinds of parameters, we discover the familiar characteristics of them, these characteristics can provide benefits when designing is requested. The typical lattices of two dimensional photonic crystals are square lattice, triangular lattice and hexagonal lattice(honeycomb). The structure types can be hole or dielectric rod, the shape of elements can be circle, square and hexagon , and there are also two different kinds of polarization: TE mode and TM mode. Third, introductions of several kinds of complex structures and their band diagrams are presented.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:00:43Z (GMT). No. of bitstreams: 1
ntu-101-R98525066-1.pdf: 4831912 bytes, checksum: acc0f8165468a45270a969e259776e7c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
符號表 ix
第一章 導論
1.1 研究背景與動機 1
1.2 歷史文獻回顧 2
1.3 本文架構介紹 3
第二章 光子晶體原理 4
2.1 光子晶體的發展 4
2.1.1 光子晶體能隙 5
2.2 電磁波理論 5
2.3 倒置晶格向量空間 8
2.4 布洛赫理論與平面波展開法 11
2.4.1 布洛赫理論 11
2.4.2 平面波展開法 13
第三章 二維光子晶體的能隙特性分析 15
3.1 理論基礎 15
3.1.1 二維統御方程式 15
3.1.2 布里淵區之定義 21
3.1.3 光子能隙大小 22
3.2 各種不同晶格對能隙的影響 23
3.2.1 正方形晶格之能隙特性 23
3.2.1.1 圓形元素 23
3.2.1.2 方形元素 24
3.2.1.3 六角形元素26
3.2.2 三角形晶格之能隙特性 27
3.2.2.1 圓形元素 27
3.2.2.2 方形元素 27
3.2.2.3 六角形元素 28
3.2.3 蜂巢狀晶格之能隙特性分析與綜合比較 29
第四章 二維複雜光子晶體結構能隙特性分析 63
4.1 二維複雜光子晶體能隙特性分析 63
4.1.1 Thue-Morse光子晶體結構 63
4.1.1.1 單一元素的Thue-Morse晶格結構 67
4.1.1.2 改變元素形狀的Thue-Morse晶格結構 68
4.1.2 不規則形光子晶體結構 69
4.1.1.1 (4.8.8)結構 70
4.1.1.2 (3.3.4.3.4)結構 71
第五章 結論與未來展望 90
5.1 結論 90
5.2 未來展望 91
參考文獻 92
dc.language.isozh-TW
dc.title二維光子晶體全反射帶隙結構之研究zh_TW
dc.titleOmnidirectional reflection of two-dimensional photonic crystalsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳翰,郭鴻飛,林志昌
dc.subject.keyword光子晶體,全方向反射,光子能隙,能隙結構圖,平面波展開法,zh_TW
dc.subject.keywordphotonic crystals,omnidirectional reflections,PBG,band structure,plane wave expansion,en
dc.relation.page94
dc.rights.note未授權
dc.date.accepted2012-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved