請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16081完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭石通(Shih-Tong Jeng) | |
| dc.contributor.author | Wei-Lun Chang | en |
| dc.contributor.author | 張維倫 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:00:25Z | - |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | 41
參考文獻 王姿閔 (2010). 國產甘藷之花青素組成及抗解澱粉製備之研究。國立台灣大學農業 化學系碩士論文。 林盈仲 (2008). 阿拉伯芥澱粉分支酶活性的降低對於澱粉粒性質的影響。國立台灣 大學植物科學研究所碩士論文。 侯金日、李瑞興、溫英源、黃啟鐘。(2008)。甘藷有機栽培技術之研究。有機作物 栽培技術研討會專刊,83-126。 陳宗祺 (2010). 澱粉分支酶在阿拉伯芥和甘藷中的功能探討。國立台灣大學植物科 學研究所碩士論文。 賴永昌,李忠田,鄭統隆,蔡武雄。(2008)。甘藷新品種台農 73 號之育成。台灣 農業研究,57 (4):279-294。 Badenhuizen, N.P. (1969). The biogenesis of starch granules in higher plants. (New York,: Appleton-Century-Crofts). Ballicora, M.A., Dubay, J.R., Devillers, C.H., and Preiss, J. (2005). Resurrecting the ancestral enzymatic role of a modulatory subunit. J. Biol. Chem. 280: 10189-10195. Banks, W., Greenwoo.Ct, and Muir, D.D. (1974). Studies on Starches of High Amylose Content .17. A Review of Current Concepts. Starke 26: 289-300. Blauth, S.L., Yao, Y., Klucinec, J.D., Shannon, J.C., Thompson, D.B., and Guilitinan, M.J. (2001). Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol. 125: 1396-1405. Blauth, S.L., Kim, K.N., Klucinec, J., Shannon, J.C., Thompson, D., and Guiltinan, M. (2002). Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Mol. Biol. 48: 287-297. Blennow, A., Hansen, M., Schulz, A., Jorgensen, K., Donald, A.M., and Sanderson, J. (2003). The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy. J. Struct. Biol. 143: 229-241. Borovsky, D., Smith, E.E., and Whelan, W.J. (1976). On the mechanism of amylose branching by potato Q-enzyme. Eur. J. Biochem. 62: 307-312. Boyer, C.D., and Preiss, J. (1978). Multiple forms of (1→ 4)-α-D-glucan, (1 → 4)-α-D-glucan-6- glycosyl transferase from developing zea mays L. Kernels. Carbohydr. Res. 61: 321-334. Buleon, A., Gallant, D.J., Bouchet, B., Mouille, G., D'Hulst, C., Kossmann, J., and Ball, S. (1997). Starches from A to C. Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal. Plant Physiol. 115: 949-957. 42 Butardo, V.M., Fitzgerald, M.A., Bird, A.R., Gidley, M.J., Flanagan, B.M., Larroque, O., Resurreccion, A.P., Laidlaw, H.K., Jobling, S.A., Morell, M.K., and Rahman, S. (2011). Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing. J. Exp. Bot. 62: 4927-4941. Chen, H.J., Chen, J.Y., and Wang, S.J. (2008). Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta. Physiologiae Plantarum 30: 135-142. Craig, J., Lloyd, J.R., Tomlinson, K., Barber, L., Edwards, A., Wang, T.L., Martin, C., Hedley, C.L., and Smith, A.M. (1998). Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell 10: 413-426. Dumez, S., Wattebled, F., Dauvillee, D., Delvalle, D., Planchot, V., Ball, S.G., and D'Hulst, C. (2006). Mutants of Arabidopsis lacking starch branching enzyme II substitute plastidial starch synthesis by cytoplasmic maltose accumulation. Plant Cell 18: 2694-2709. Edwards, A., Fulton, D.C., Hylton, C.M., Jobling, S.A., Gidley, M., Rossner, U., Martin, C., and Smith, A.M. (1999). A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17: 251-261. Eliasson, A.C. (1980). Effect of water content on the gelatinization of wheat starch. Starke 32: 270-272. Fujita, N., Hasegawa, H., and Taira, T. (2001). The isolation and characterization of a waxy mutant of diploid wheat (Triticum monococcum L.). Plant Sci. 160: 595-602. Gallant, D.J., Bouchet, B., and Baldwin, P.M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 32: 177-191. Geigenberger, P., Kolbe, A., and Tiessen, A. (2005). Redox regulation of carbon storage and partitioning in response to light and sugars. J. Exp. Bot. 56: 1469-1479. Guan, H., Li, P., Imparl-Radosevich, J., Preiss, J., and Keeling, P. (1997). Comparing the properties of Escherichia coli branching enzyme and maize branching enzyme. Arch. Biochem. Biophys. 342: 92-98. Guan, H.P., and Preiss, J. (1993). Differentiation of the Properties of the Branching Isozymes from Maize (Zea mays). Plant Physiol. 102: 1269-1273. Hamada, T., Kim, S.H., and Shimada, T. (2006). Starch-branching enzyme I gene (IbSBEI) from sweet potato (Ipomoea batatas); molecular cloning and expression analysis. Biotechnol. Lett. 28: 1255-1261. 43 Han, Y., Sun, F.J., Rosales-Mendoza, S., and Korban, S.S. (2007). Three orthologs in rice, Arabidopsis, and Populus encoding starch branching enzymes (SBEs) are different from other SBE gene families in plants. Gene 401: 123-130. Hanashiro, I., Abe, J., and Hizukuri, S. (1996). A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 283: 151-159. Hirose, T., and Terao, T. (2004). A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 220: 9-16. Hizukuri, S. (1986). Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147: 342-347. Hovenkamphermelink, J.H.M., Devries, J.N., Adamse, P., Jacobsen, E., Witholt, B., and Feenstra, W.J. (1988). Rapid estimation of the amylose amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Research 31: 241-246. Jeon, J.S., Ryoo, N., Hahn, T.R., Walia, H., and Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48: 383-392. Jobling, S. (2004). Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 7: 210-218. Jobling, S.A., Schwall, G.P., Westcott, R.J., Sidebottom, C.M., Debet, M., Gidley, M.J., Jeffcoat, R., and Safford, R. (1999). A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J. 18: 163-171. Kimura, T., Otani, M., Noda, T., Ideta, O., Shimada, T., and Saito, A. (2001). Absence of amylose in sweet potato (Ipomoea batatas (L.) Lam.) following the introduction of granule-bound starch synthase I cDNA. Plant Cell Rep. 20: 663-666. Kitahara, K., Hamasuna, K., Nozuma, K., Otani, M., Hamada, T., Shimada, T., Fujita, K., and Suganuma, T. (2007). Physicochemical properties of amylose-free and high-amylose starches from transgenic sweetpotatoes modified by RNA interference. Carbohydr. Polym. 69: 233-240. Koroteeva, D.A., Kiseleva, V.I., Krivandin, A.V., Shatalova, O.V., Blaszczak, W., Bertoft, E., Piyachomkwan, K., and Yuryev, V.P. (2007). Structural and thermodynamic properties of rice starches with different genetic background Part 2. Defectiveness of different supramolecular structures in starch granules. Int. J. Biol. Macromol. 41: 534-547. Kubo, A., Fujita, N., Harada, K., Matsuda, T., Satoh, H., and Nakamura, Y. (1999). The starch-debranching enzymes isoamylase and pullulanase are both involved 44 in amylopectin biosynthesis in rice endosperm. Plant Physiol. 121: 399-410. Kuipers, A., Jacobsen, E., and Visser, R. (1994). Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell 6: 43-52. Larsson, C.T., Hofvander, P., Khoshnoodi, J., Ek, B., Rask, L., and Larsson, H. (1996). Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci. 117: 9-16. Lee, M.H., Yoon, E.S., Jeong, J.H., and Choi, Y.E. (2004). Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Rep. 22: 822-827. Li, B., Geiger, D.R., and Shieh, W.J. (1992). Evidence for circadian regulation of starch and sucrose synthesis in sugar beet leaves. Plant Physiol. 99: 1393-1399. Martin, C., and Smith, A.M. (1995). Starch biosynthesis. Plant Cell 7: 971-985. Mercier, C., Charbonn.R, Gallant, D., and Guilbot, A. (1970). Development of some characteristics of starches extracted from normal corn and amylomaize grains during their formation. Starke 22: 9-16. Morrison, W.R., Tester, R.F., Snape, C.E., Law, R., and Gidley, M.J. (1993). Swelling and gelatinization of cereal starches. 4. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chemistry 70: 385-391. Nakamura, T., Vrinten, P., Hayakawa, K., and Ikeda, J. (1998). Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol. 118: 451-459. Nakamura, Y. (2002). Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol. 43: 718-725. Nishi, A., Nakamura, Y., Tanaka, N., and Satoh, H. (2001). Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 127: 459-472. Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., and Yamakawa, O. (1998). Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr. Polym. 37: 153-158. Otani, M., Mii, M., Handa, T., Kamada, H., and Shimada, T. (1993). Transformation of sweet potato (Ipomaea-Batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Sci. 94: 151-159. Otani, M., Hamada, T., Katayama, K., Kitahara, K., Kim, S.H., Takahata, Y., Suganuma, T., and Shimada, T. (2007). Inhibition of the gene expression for 45 granule-bound starch synthase I by RNA interference in sweet potato plants. Plant Cell Rep. 26: 1801-1807. Patron, N.J., Smith, A.M., Fahy, B.F., Hylton, C.M., Naldrett, M.J., Rossnagel, B.G., and Denyer, K. (2002). The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5'-non-coding region. Plant Physiol. 130: 190-198. Peat, S., Whelan, W.J., and Thomas, G.J. (1956). The enzymic synthesis and degradation of starch. 22. Evidence of multiple branching in waxy-maize starch. A Correction. J. Chem. Soc.: 3025-3030. Poire, R., Wiese-Klinkenberg, A., Parent, B., Mielewczik, M., Schurr, U., Tardieu, F., and Walter, A. (2010). Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects. J. Exp. Bot. 61: 1751-1759. Ravindran, V., Ravindran, G., Sivakanesan, R., and Rajaguru, S.B. (1995). Biochemical and nutritional assessment of tubers from 16 cultivars of sweet potato (Ipomoea Batatas L.). J. Agric. Food Chem. 43: 2646-2651. Regina, A., Kosar-Hashemi, B., Ling, S., Li, Z., Rahman, S., and Morell, M. (2010). Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J. Exp. Bot. 61: 1469-1482. Regina, A., Kosar-Hashemi, B., Li, Z., Pedler, A., Mukai, Y., Yamamoto, M., Gale, K., Sharp, P.J., Morell, M.K., and Rahman, S. (2005). Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta 222: 899-909. Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, Z., Rahman, S., and Morell, M. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. U S A 103: 3546-3551. Roldan, I., Wattebled, F., Mercedes Lucas, M., Delvalle, D., Planchot, V., Jimenez, S., Perez, R., Ball, S., D'Hulst, C., and Merida, A. (2007). The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49: 492-504. Safford, R., Jobling, S.A., Sidebottom, C.M., Westcott, R.J., Cooke, D., Tober, K.J., Strongitharm, B.H., Russell, A.L., and Gidley, M.J. (1998). Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydr. Polym. 35: 155-168. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: A laboratory 46 manual. (New York: Cold Spring Harbor). Sano, Y. (1984). Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68: 467-473. Santa-Maria, M., Pecota, K.V., Yencho, C.G., Allen, G., and Sosinski, B. (2009). Rapid shoot regeneration in industrial 'high starch' sweetpotato (Ipomoea batatas L.) genotypes. Plant Cell Tiss. Org. 97: 109-117. Satoh, H., Nishi, A., Yamashita, K., Takemoto, Y., Tanaka, Y., Hosaka, Y., Sakurai, A., Fujita, N., and Nakamura, Y. (2003). Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 133: 1111-1121. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18: 1121-1133. Schwall, G.P., Safford, R., Westcott, R.J., Jeffcoat, R., Tayal, A., Shi, Y.C., Gidley, M.J., and Jobling, S.A. (2000). Production of very-high-amylose potato starch by inhibition of SBE A and B. Nat. Biotechnol. 18: 551-554. Sestili, F., Janni, M., Doherty, A., Botticella, E., D'Ovidio, R., Masci, S., Jones, H.D., and Lafiandra, D. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol. 10: 144. Shimada, T., Otani, M., Hamada, T., and Kim, S.-H. (2006). Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol. 23: 85-90. Sivak, M.N., and Preiss, J. (1998). Starch: basic science to biotechnology. Adv. Food Nutr. Res. 41: 163-170. Smith, A.M., and Zeeman, S.C. (2006). Quantification of starch in plant tissues. Nat. Protoc. 1: 1342-1345. Smith, A.M., Neuhaus, H.E., and Stitt, M. (1990). The impact of decreased activity of starch-branching enzyme on photosynthetic starch synthesis in leaves of wrinkled-seeded peas. Planta 181: 310-315. Smith, A.M., Denyer, K., and Martin, C. (1997). The Synthesis of the Starch Granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67-87. Streb, S., Delatte, T., Umhang, M., Eicke, S., Schorderet, M., Reinhardt, D., and Zeeman, S.C. (2008). Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20: 3448-3466. Taira, T., Uematsu, M., Nakano, Y., and Morikawa, T. (1991). Molecular identification and comparison of the starch synthase bound to starch granules between endosperm and leaf blades in rice plants. Biochem. Genet. 29: 301-311. 47 Takeda, Y., Guan, H.P., and Preiss, J. (1993). Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr. Res. 240: 253-263. Tetlow, I.J., Morell, M.K., and Emes, M.J. (2004). Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55: 2131-2145. Tian, S.J., Rickard, J.E., and Blanshard, J.M.V. (1991). Physicochemical properties of sweet potato starch. J. Sci. Food Agric. 57: 459-491. Tomlinson, K.L., Lloyd, J.R., and Smith, A.M. (1997). Importance of isoforms of starch-branching enzyme in determining the structure of starch in pea leaves. Plant J. 11: 31-43. Tsai, C.Y. (1974). The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11: 83-96. Tsai, C.Y., and Nelson, O.E. (1966). Starch-Deficient Maize Mutant Lacking Adenosine Diphosphate Glucose Pyrophosphorylase Activity. Science 151: 341-343. Vandeputte, G.E., Vermeylen, R., Geeroms, J., and Delcour, J.A. (2003). Rice starches. I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. of Cereal Sci. 38: 43-52. Vrinten, P.L., and Nakamura, T. (2000). Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol. 122: 255-264. Wang, S.J., Yeh, K.W., and Tsai, C.Y. (2001). Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci. 161: 635-644. Wang, X.C., Xue, L., Sun, J.Q., and Zuo, J.R. (2010). The arabidopsis BE1 gene, encoding a putative glycoside hydrolase localized in plastids, plays crucial roles during embryogenesis and carbohydrate metabolism. J. of Integrative Plant Biol. 52: 273-288. Waniska, R.D., and Gomez, M.H. (1992). Dispersion behavior of starch. Food Tech. 46: 110-123. Xia, H., Yandeau-Nelson, M., Thompson, D.B., and Guiltinan, M.J. (2011). Deficiency of maize starch-branching enzyme I results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination. BMC Plant Biol. 11: 95-107. Yandeau-Nelson, M.D., Laurens, L., Shi, Z., Xia, H., Smith, A.M., and Guiltinan, M.J. (2011). Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol. 156: 479-490. Zeeman, S.C., Smith, S.M., and Smith, A.M. (2007a). The diurnal metabolism of leaf 48 starch. Biochem. J. 401: 13-28. Zeeman, S.C., Umemoto, T., Lue, W.L., Au-Yeung, P., Martin, C., Smith, A.M., and Chen, J. (1998). A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10: 1699-1712. Zeeman, S.C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Streb, S., Reinhold, H., and Kotting, O. (2007b). Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Funct. Plant Biol. 34: 465-473. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16081 | - |
| dc.description.abstract | 澱粉是我們食物以及工業用途重要的來源,澱粉分支酶 (starch branching
enzymes, SBE) 與顆粒結合澱粉合成酶 (granule bound starch synthase, GBSS) 皆參與在澱粉的生合成路徑上,直鏈澱粉是 GBSS 將葡萄糖以 α-1,4 鍵結方式形成的長鏈狀高分子,支鏈澱粉除了有 α-1,4 鍵結的高分子外,還利用 SBE 將內部的 α-1,4 鍵結切除轉向以 α-1,6 鍵結來形成分支。我們設計 artificial microRNA 干擾方式來同時降低甘藷 IbSBE1 和 IbSBE2 的表現量,選取自前人研究 amylose extender 的前兩個字母並命名為 AMEX2,另外也額外大量表現 IbGBSS 並命名為 AMEX3,目的是預期能大幅增加直鏈澱粉含量,並了解此二酵素對於暫存性葉部澱粉及儲存性塊根澱粉的影響。結果顯示 AMEX2 和 AMEX3 轉殖株葉部型態呈現皺褶狀,另外也延遲了塊根生長的時間。AMEX2 和 AMEX3 轉殖株的暫存性葉部澱粉含量相較於野生型甘藷台農 57 號,在光照結束的時間點 (L16) 澱粉生合成含量有降低 50-70%的趨勢,而且轉殖株暫存性葉部澱粉的外觀型態皆有不規則的外觀。然而在 AMEX2 和 AMEX3 儲存性塊根澱粉的外觀型態卻和野生型甘藷相似,但其儲存性塊根澱粉粒的大小較野生型甘藷來的小,且塊根澱粉含量極低,僅占乾重不到 1%。進一步分析轉殖株暫存性葉部澱粉及儲存性塊根澱粉的直鏈澱粉和支鏈澱粉含量,直鏈澱粉相對含量皆稍微的增加 1-2%,而在支鏈澱粉鏈長分布的情形發現在短鏈和中長鏈 (DP 6-24) 的比例減少,而提高了長鏈 (DP > 25) 的比例,經由熱性質分析,暫存性葉部澱粉在轉殖株中的糊化溫度 (60.4℃及 58.51℃) 及熱焓值 (9.68 J/g 及 9.3 J/g) 較野生型甘藷低 (61.82℃;11.96 J/g),儲存性塊根澱粉在轉殖株中的糊化溫度 (69.73℃) 及熱焓值 (16.44 J/g) 也較野生型甘藷低 (73.97℃;19.1 J/g),推測降低 IbSBE1 和 IbSBE2 的表現,在澱粉的結構及含量皆造成了影響,然而要大幅增加直鏈澱粉含量仍需進一步的研究。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:00:25Z (GMT). No. of bitstreams: 1 ntu-101-R99b42014-1.pdf: 2722714 bytes, checksum: 8aed5e41121d0f2720124e83ada9c970 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄 ....................................................................................................................................i
圖表及附錄目錄 .............................................................................................................. iii 縮寫對照表 ....................................................................................................................... v 摘要 .................................................................................................................................. vi Abstract ............................................................................................................................ vii 第一章 前言 .................................................................................................................... 1 1. 甘藷 (Ipomoea batatas (L.) Lam) 簡介 ............................................................ 1 2. 澱粉應用特性 ..................................................................................................... 1 3. 澱粉分子結構 ..................................................................................................... 2 4. 澱粉之糊化 ......................................................................................................... 3 5. 澱粉合成相關酵素 ............................................................................................. 4 6. 不同物種 GBSS 與 SBE 澱粉合成相關酵素之研究 .................................... 6 7. 研究方向 ............................................................................................................. 8 第二章 材料與方法 ...................................................................................................... 10 實驗材料 ................................................................................................................ 10 實驗使用之儀器 .................................................................................................... 10 實驗方法 ................................................................................................................ 10 1. 載體構築 ................................................................................................... 10 2. 甘藷轉殖 ................................................................................................... 15 3. 檢測轉殖植物 ........................................................................................... 16 4. 蛋白質檢測 ............................................................................................... 19 5. 澱粉特性檢測 ........................................................................................... 22 第三章 結果 .................................................................................................................. 27 1. 載體構築 ........................................................................................................... 27 2. 轉殖株檢測 ....................................................................................................... 27 2.1 檢測轉殖株 genomic DNA .................................................................... 27 2.2 檢測 amiRSBE precursor ....................................................................... 28 2.3 檢測目標基因 IbGBSS、IbSBE1 和 IbSBE2 表現 ............................ 28 3. SBE 酵素活性檢測 ......................................................................................... 28 4. 轉殖株外表型分析 ........................................................................................... 29 5. 澱粉特性檢測 ................................................................................................... 29 5.1 總澱粉量檢測 ......................................................................................... 29 5.2 甘藷塊根剖面外表型態 ......................................................................... 30 5.3 澱粉粒外觀 ............................................................................................. 30 5.4 塊根澱粉粒徑大小分布 ......................................................................... 31 5.5 直鏈澱粉相對含量 ................................................................................. 31 5.6 支鏈澱粉鏈長分布情形 ......................................................................... 32 5.7 澱粉熱性質分析 ..................................................................................... 32 第四章 討論 .................................................................................................................. 34 降低 IbSBE 活性使澱粉生成量減少 ................................................................. 34 降低 IbSBE 活性使澱粉顆粒型態受到影響 ..................................................... 36 支鏈澱粉與直鏈澱粉對澱粉結構的影響 ............................................................ 37 參考文獻 ........................................................................................................................ 41 圖表 ................................................................................................................................ 49 附錄 ................................................................................................................................ 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 糊化溫度 | zh_TW |
| dc.subject | 鏈長分布 | zh_TW |
| dc.subject | 顆粒結合澱粉合成酶 | zh_TW |
| dc.subject | 澱粉分支酶 | zh_TW |
| dc.subject | 甘藷 | zh_TW |
| dc.subject | gelatinization temperature | en |
| dc.subject | starch branching enzyme | en |
| dc.subject | granule bound starch synthase | en |
| dc.subject | chain length distribution | en |
| dc.subject | sweet potato | en |
| dc.title | 澱粉分支酶與顆粒結合澱粉合成酶之基因突變對甘藷澱粉性質與累積的影響 | zh_TW |
| dc.title | The effects of mutation of starch branching enzyme and
granule bound starch synthase genes of sweet potato on starch properties and accumulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標(Tsan-Piao Lin),賴喜美(Hsi-Mei Lai),黃麗芬(Li-Fen Huang) | |
| dc.subject.keyword | 甘藷,澱粉分支酶,顆粒結合澱粉合成酶,鏈長分布,糊化溫度, | zh_TW |
| dc.subject.keyword | sweet potato,starch branching enzyme,granule bound starch synthase,chain length distribution,gelatinization temperature, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
