Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16076
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟
dc.contributor.authorYi-Lin Wuen
dc.contributor.author吳懿麟zh_TW
dc.date.accessioned2021-06-07T18:00:12Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] M. Pope, P. Magnante and H. P. Kallmann, J. Chem. Phys. 38, 2042 (1963)
[2] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987)
[3] A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski and N. Rutherford, Appl. Phys. Lett. 83, 413 (2003)
[4] C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner and S. R. Forrest, IEEE Electron Device Lett. 18, 609 (1997)
[5] G. Gu and S. R. Forrest, IEEE J. Sel. Top. Quantum Electron. 4, 83 (1998)
[6] M. Stewart, R. S. Howell, L. Pires and M. K. Hatalis, IEEE Trans. Electron Devices 48, 845 (2001)
[7] Y. He, R. Hattori and J. Kanicki, IEEE Trans. Electron Devices 48, 1322 (2001)
[8] J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995)
[9] Y. Sun and S. R. Forrest, Appl. Phys. Lett. 91, 263503 (2007)
[10] S. R. Forrest, Org. Electron. 4, 45 (2003)
[11] H. N. Lee, J. Kyung, M. C. Sung, D. Y. Kim, S. K. Kang, S. J. Kim, C. N. Kim, H. G. Kim and S. T. Kim, J. Soc. Inf. Disp. 16, 265 (2008)
[12] C. C. Wu, C. W. Chen, C. L. Lin and C. J. Yang, J. Disp. Technol. 1, 248 (2005)
[13] C. W. Chu, C. W. Chen, S. H. Li, E. H. E. Wu and Y. Yang, Appl. Phys. Lett. 86, 253503 (2005)
[14] T. Miyashita, S. Naka, H. Okada, H. Onnagawa and Ite, Idw/Ad '05: Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005 1, 617 (2005)
[15] J. Z. Li, M. Yahiro, K. Ishida, H. Yamada and K. Matsushige, Synth. Met. 151, 141 (2005)
[16] S. Hamwi, J. Meyer, T. Winkler, T. Riedl and W. Kowalsky, Appl. Phys. Lett. 94, 253307 (2009)
[17] X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig and K. Leo, Appl. Phys. Lett. 81, 922 (2002)
[18] J. H. Lee, M. H. Wu, C. C. Chao, H. L. Chen and M. K. Leung, Chem. Phys. Lett. 416, 234 (2005)
[19] C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006)
[20] T. Y. Chu, S. Y. Chen, J. F. Chen and C. H. Chen, Jpn. J. Appl. Phys. 45, 4948 (2006)
[21] S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996)
[22] J. X. Sun, X. L. Zhu, H. J. Peng, M. Wong and H. S. Kwok, Appl. Phys. Lett. 87, 093504 (2005)
[23] T. Tsutsui and M. Terai, Appl. Phys. Lett. 84, 440 (2004)
[24] C. C. Chang, S. W. Hwang, C. H. Chen and J. F. Chen, Jpn. J. Appl. Phys. 43, 6418 (2004)
[25] F. W. Guo and D. G. Ma, Appl. Phys. Lett. 87, 173510 (2005)
[26] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Appl. Phys. Lett. 87, 241121 (2005)
[27] C. C. Chang, J. F. Chen, S. W. Hwang and C. H. Chen, Appl. Phys. Lett. 87, 253501 (2005)
[28] H. Kanno, N. C. Giebink, Y. Sun and S. R. Forrest, Appl. Phys. Lett. 89, 023503 (2006)
[29] H. Kanno, Y. Hamada, K. Nishimura, K. Okumoto, N. Saito, H. Ishida, H. Takahashi, K. Shibata and K. Mameno, Jpn. J. Appl. Phys. 45, 9219 (2006)
[30] L. S. Liao, K. P. Klubek and C. W. Tang, Appl. Phys. Lett. 84, 167 (2004)
[31] T. Y. Cho, C. L. Lin and C. C. Wu, Appl. Phys. Lett. 88, 111106 (2006)
[32] W. Y. Gao and A. Kahn, Appl. Phys. Lett. 79, 4040 (2001)
[33] J. Meyer, M. Kroeger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky and A. Kahn, Appl. Phys. Lett. 96, 193302 (2010)
[34] K. S. Yook, S. O. Jeon, S.-Y. Min, J. Y. Lee, H.-J. Yang, T. Noh, S.-K. Kang and T.-W. Lee, Adv. Funct. Mater. 20, 1797 (2010)
[35] S. Hamwi, J. Meyer, M. Kroeger, T. Winkler, M. Witte, T. Riedl, A. Kahn and W. Kowalsky, Adv. Funct. Mater. 20, 1762 (2010)
[36] L.-S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks and D. L. Comfort, Adv. Mater. 20, 324 (2008)
[37] L. S. Liao and K. P. Klubek, Appl. Phys. Lett. 92, 223311 (2008)
[38] Y.-K. Kim, J. W. Kim and Y. Park, Appl. Phys. Lett. 94, 063305 (2009)
[39] S. M. Park, Y. H. Kim, Y. Yi, H. Y. Oh and J. W. Kim, Appl. Phys. Lett. 97, 063308 (2010)
[40] T. Chiba, Y.-J. Pu, R. Miyazaki, K.-i. Nakayama, H. Sasabe and J. Kido, Org. Electron. 12, 710 (2011)
[41] K. S. Yook, S. O. Jeon and J. Y. Lee, Thin Solid Films 517, 6109 (2009)
[42] P. Amsalem, A. Wilke, J. Frisch, J. Niederhausen, A. Vollmer, R. Rieger, K. Muellen, J. P. Rabe and N. Koch, J. Appl. Phys. 110, 113709 (2011)
[43] J. R. Gallegos, A. H. Francis, N. W. Ockwig, P. G. Rasmussen, R. G. Raptis, P. R. Challen and I. Ouedraogo, Synth. Met. 159, 1667 (2009)
[44] P. M. Borsenberger, L. Pautmeier and H. Bassler, J. Chem. Phys. 94, 5447 (1991)
[45] T.-Y. Chu, J.-F. Chen, S.-Y. Chen, C.-J. Chen and C. H. Chen, Appl. Phys. Lett. 89, 053503 (2006)
[46] S. J. Su, T. Chiba, T. Takeda and J. Kido, Adv. Mater. 20, 2125 (2008)
[47] S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So and J. G. Xue, Org. Electron. 10, 686 (2009)
[48] S. Lee, J. H. Lee and J. J. Kim, Adv. Funct. Mater. 22, 855 (2012)
[49] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu and Z. H. Lu, Science 332, 944 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16076-
dc.description.abstract有機發光元件至今已經快速發展成一具有潛力的平面顯示技術,其中,主動矩陣有機發光元件以薄膜電晶體為底,能達到高品質的全彩顯示,是一個有潛力的顯示技術。為了能夠利用n型氧化物半導體薄膜電晶體的優點,希望能夠使用倒置式有機發光元件與之搭配。為了增長有機發光元件的壽命,必須設法使有機發光元件操作在低電流下仍然能有高發光亮度,因此希望製作出堆疊串接式有機發光元件。
  在本論文的第一部份中,我們針對倒置式有機發光元件做深入探討。在電洞注入層方面,我們使用了新穎的有機電洞注入材料,並探討其對於元件的影響;在電子注入層方面,我們使用了數種不同的電子傳輸層材料做n型摻雜,並探討其對於元件的影響。最後,我們製作出了能與傳統非倒置式有機發光元件相匹敵的高效率、低操作電壓之磷光綠光倒置式有機發光元件。
  在本論文的第二部份中,我們針對堆疊串接式有機發光元件做深入探討。我們分別使用「電洞傳輸材料/有機電洞注入材料/n型摻雜電子傳輸材料」與「電洞傳輸材料/電洞傳輸材料與有機電洞注入材料混合層/有機電洞注入材料/n型摻雜電子傳輸材料」兩種不同的載子產生層結構於堆疊串接式有機發光元件,並製作出高效率磷光綠光堆疊串接式有機發光元件,在高亮度下,堆疊串接式元件之電流發光效率大於單層標準元件之兩倍,發光功率效率亦大於標準元件。
zh_TW
dc.description.abstractOrganic light-emitting devices (OLEDs) have been developed as a potential display technology. Active matrix organic light-emitting devices (AM-OLEDs) consisting of OLEDs and thin film transistors (TFTs) have been applied in displays due to their superb quality. Since most TFTs are n-type, it is desirable to use inverted OLEDs to connect with n-TFTs to achieve better performances. In order to enhance the lifetime of OLEDs, lower drive currents yet with high luminance are required; therefore, it is desirable to develop tandem OLEDs.
In the first part of the thesis, we investigated inverted OLEDs. For the hole-injection layer, we used novel organic hole-injection materials and investigated their effects on devices. For the electron-injection layer, we used several n-doped electron-transport materials and investigated their effects on devices. Finally, we fabricated green phosphorescent inverted OLEDs with high efficiency and low drive voltage, which are comparable with those of the conventional non-inverted OLEDs.
In the second part of the thesis, we investigated tandem OLEDs. We used two different types of charge generation layers – “hole-transport material/ organic hole-injection material/ n-doped electron-transport material” and “hole-transport material/ mixed layer of hole-transport material and organic hole-injection material/ organic hole-injection material/ n-doped electron-transport material” – in tandem OLEDs, and fabricated phosphorescent green tandem OLEDs with high efficiency. At a high luminance, the current efficiency and power efficiency of the tandem OLEDs are twice higher and higher than those of the single-unit benchmark device.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:00:12Z (GMT). No. of bitstreams: 1
ntu-101-R99943066-1.pdf: 2971713 bytes, checksum: 7f08f36a098797c7a274e5a583ac73d3 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 IV
Abstract V
目次 VII
圖目次 IX
表目次 XI
第一章 緒論 1
1.1 有機發光元件之簡介 1
1.2 倒置式有機發光元件 2
1.3 堆疊串接式有機發光元件 3
1.4 論文架構 4
第一章圖表 5
第二章 倒置式有機發光元件之研究 6
2.1 前言 6
2.2 實驗方法 6
2.3 有機電洞注入材料於倒置式有機發光元件之效應 7
2.4 n型摻雜電子傳輸層於倒置式有機發光元件之效應 10
2.5 總結 13
第二章圖表 14
第三章 堆疊串接式有機發光元件之研究 33
3.1 前言 33
3.2 實驗方法 33
3.3 使用電洞傳輸材料/有機電洞注入材料/n型摻雜電子傳輸材料之載子產生層結構之堆疊串接式有機發光元件 34
3.4 使用電洞傳輸材料/電洞傳輸材料與有機電洞注入材料混合層/有機電洞注入材料/n型摻雜電子傳輸材料之載子產生層結構之堆疊串接式有機發光元件 38
3.5 總結 39
第三章圖表 41
第四章 總結與未來展望 56
4.1 總結 56
4.2 未來展望 57
參考資料 58
dc.language.isozh-TW
dc.subject電荷注入層zh_TW
dc.subject倒置式有機發光元件zh_TW
dc.subject載子產生層zh_TW
dc.subject堆疊串接式有機發光元件zh_TW
dc.subjectcarrier-injection layersen
dc.subjectinverted organic light-emitting devicesen
dc.subjectcharge-generation layersen
dc.subjecttandem organic light-emitting devicesen
dc.title倒置式與堆疊串接式有機發光元件之研究zh_TW
dc.titleInvestigations of Inverted and Tandem Organic Light-Emitting Devicesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俐吟,蔡志宏
dc.subject.keyword倒置式有機發光元件,電荷注入層,堆疊串接式有機發光元件,載子產生層,zh_TW
dc.subject.keywordinverted organic light-emitting devices,carrier-injection layers,tandem organic light-emitting devices,charge-generation layers,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved