請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16074完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | |
| dc.contributor.author | Jeng-Wei Yu | en |
| dc.contributor.author | 游政衛 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:00:07Z | - |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | T. Palacios, “Beyond the AlGaN/GaN HEMT:new concepts for high-speed transistors,” Physica Staus Solidi A 206, 1145 (2009).
K. Shinohara, D. Regan, I. Milosavljevic, A. L. Corrion, D. F. Brown, P. J. Willadsen, C. Butler, A. Schmitz, S. Kim, V. Lee, A. Ohoka, P. M. Asbeck, and M. Micovic, “Electron velocity enhancement in laterally scaled GaN DH-HEMT with fT of 260GHz,” IEEE Electron Device Letter 32, 1074 (2011). Nidhi, S. Dasgupta, S. Keller, J. S. Speck, and U. K. Mishra, “N-polar GaN/AlN MIS HEMT with fMAX of 204GHz for Ka-band applications,” IEEE Electron Device Letter 32, 1683 (2011). H. Iwai, “Road for 22nm technology and beyond,” Microelectronics Eng. 86, 1520 (2009). M. Egard, S. Johansson, A. C. Johansson, K. M. Persson, A. W. Dey, B. M. Borg, C. Thelander, L. E. Wernersson and E. Lind, “Vertical InAs nanowire wrap gate transistor with fT>7GHz and fMAX>20GHz,” Nano Letter 10, 809 (2010). D. H. Kim and J. A. Del Alamo, “Lateral and vertical scaling of HEMTs for post Si-CMOS applications,” IEEE Trans. Electron Devices 55, 2546 (2008). S. Vandenbrouck, K. Madjour, D. Theron, D. Yajie, Y. Li, C. M. Lieber, C. Gaquiere, “12GHz fMAX GaN/AlN/AlGaN nanowire MISFET,” IEEE Electron Device Letter, 30, 322 (2009). Nidhi, S. Dasgupta, D. F. Brown, S. Keller, J. S. Speck, U. K. Mishra, ” N-polar GaN-based highly scaled self-aligned MIS-HEMTs with state-of-the-art fT.LG product of 16.8 GHz-µm,” IEDM Tech Dig. 1 (2009). C. B. Cao, X. Xiang, and H. S. Zhu, 'High-density, uniform gallium nitride nanorods grown on Au-coated silicon substrate,' Journal of Crystal Growth, vol. 273, pp. 375-380, Jan 3 (2005). T. Y. Kim, S. H. Lee, Y. H. Mo, H. W. Shim, K. S. Nahm, E. K. Suh, J. W. Yang, K. Y. Lim, and G. S. Park, 'Growth of GaN nanowires on Si substrate using Ni catalyst in vertical chemical vapor deposition reactor,' Journal of Crystal Growth, vol. 257, pp. 97-103, (2003). A. Wohlfart, A. Devi, E. Maile, and R. A. Fischer, 'Morphology controlled growth of arrays of GaN nanopillars and randomly distributed GaN nanowires on sapphire using (N3)2Ga[(CH2)3NMe2] as a single molecule precursor,' Chemical Communications, pp. 998-999, (2002). J. Khanderi, A. Wohlfart, H. Parala, A. Devi, J. Hambrock, A. Birkner, and R. A. Fischer, 'MOCVD of gallium nitride nanostructures using (N3) Ga2{( CH2)3NR2}, R = Me, Et, as a single molecule precursor: morphology control and materials characterization,' Journal of Materials Chemistry 13, 1438, (2003). M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, 'Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,' Japanese Journal of Applied Physics Part 2-Letters, 36, L459, (1997). H. M. Kim, T. W. Kang, and K. S. Chung, 'Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods,' Advanced Materials 15, 567, (2003). J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, and L. D. Zhang, 'Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3,' Chemical Physics Letters 345, 372, (2001). R. S. Wagner and W. C. Ellis, 'Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E ),' Applied Physics Letters, 4, 89, (1964). V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, and J. Vanlanduyt, 'The Study of Carbon Nanotubules Produced by Catalytic Method,' Chemical Physics Letters 223, 329, (1994). Albert P. Levitt, 'WHISKER TECHNOLOGY', Wiley-Interscience, a Division of John Wiley Sons, Inc. New York, (1970). T. B. Massalski, 'Phase-Diagrams in Materials Science,' Metallurgical Transactions B-Process Metallurgy 20, 445, (1989). S. Sharma and M. K. Sunkara, 'Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes,' Journal of the American Chemical Society 124, 12288, (2002). P. D. Yang and C. M. Lieber, 'Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,' Journal of Materials Research 12, 2981, (1997). M. M. E. Fahmi, A. Khan, J. A. Griffin, G. L. Harris, L. H. Robins, A. G. Birdwell, Y. S. Kang, D. J. Smith, T. Steiner, and S. N. Mohammad, 'Nitrogen-activated bowing of dilute InyGa1-yAs1-xNx based on photoreflectance studies,' Journal of Applied Physics 94, 7576, (2003). 黃培誠, “以微米小球顯影術及光致化學蝕刻法製作氮化鎵次微米三角柱結,” 國立台灣大學光電工程學研究所碩士論文, (2006). J. D. Carey, L. L. Ong, and S. R. P. Silva, 'Formation of low-temperature self-organized nanoscale nickel metal islands,' Nanotechnology 14, 1223, (2003). B. C. Di Lello, F. J. Moura, and I. G. Solorzano, 'Synthesis and characterization of GaN using gas-solid reactions,' Materials Science and Engineering B-Solid State Materials for Advanced Technology 93, 219, (2002). M. Bruno, M. Palummo, A. Marini, R. D. Sole, V. Olevano, A. N. Kholod, and S. Ossicini,” Excitons in germanium nanowires: Quantum confinement, orientation, and anisotropy effects within a first-principles approach,” Physical Review B 72, 153310 (2005). R. Kotlyar, B. Obradovic, P. Matagne, M. Stettler, and M. D. Giles, ”Assessment of room-temperature phonon-limited mobility in gated silicon nanowires,” Applied Physics Letter 84, 5270 (2004). L. Chen and E. Towe, ” Coupled optoelectronic modeling and simulation of nanowire lasers,” Journal Applied Physics 100, 044305 (2006). A. V. Maslov, M. I. Bakunov, and C. Z. Ning, ”Distribution of optical emission between guided modes and free space in a semiconductor nanowire,” Journal Applied Physics 99, 024314 (2006). C. Mazuir and Winston V. Schoenfeld, “ Modeling of nitride based core/multishell nanowire light emitting diodes,” Journal of Nanophotonics 1, 013503 (2007). M.S. Gudiksen and C.M. Lieber, “Diameter-Selective Synthesis of Semiconductor Nanowires,” Journal of American Chemical Society 122, 8801-8802 (2000). B. S. Simpkins, P. E. Pehrsson, M. L. Taheri, and R. M. Stroud, ” Diameter control of gallium nitride nanowires,” Journal Applied Physics 101, 094305 (2007). L. Geelhaar, C. Chèze, W. M. Weber, R. Averbeck, H. Riechert, Th. Kehagias, Ph. Komninou, G. P. Dimitrakopulos, and Th. Karakostas, ”Axial and radial growth of Ni-induced GaN nanowires,” Applied Physics Letter 91, 093113 (2007). F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, ” Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics,” Nano Letter 4, 1975 (2004). 陳力俊等,材料電子顯微鏡學,行政院國科會精密儀器發展中心,p.1-71、p.251-285 (1990). O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal Applied Physics 85, 3222 (1999). M. A Mastro, B. Simpkins, G. T Wang, J. Hite, C. R Eddy Jr, H.-Y. Kim, J. Ahn and J. Kim, “Polarization fields in III-nitride nanowire device,” Nanotechnology 21, 145205 (2010). T. Paskova, “Development and prospects of nitride materials with non-polar surfaces,” Physica Staus Solidi B 245, 1011 (2008). J. Zhang, C. Yang , S. Wu, Y. Liu, H. Chen, W. Zhang, and Y. Li, “Theoretical design of GaN/ferroelectric hetero-structures,” Applied Physics Letter 95, 122101 (2009). J. Zhang, C. Yang, Y. Liu, M. Zhang, H. Chen, W. Zhang, and Y. Li, “Can we enhance two-dimensional electron gas from ferroelectric/GaN heterostructures? ” Journal Applied Physics 108, 084501, (2010). D. A. Neamen, “Semiconductor Physics and Devicess”, Third Edition, McGraw-Hill, University of New Mexico, pp.395-398, (2005). M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoc, 'Low resistance ohmic contacts on wide band-gap GaN,' Applied Physics Letter 64, 1003 (1994). D. K. Schroder, “Semiconductor material and device characterization”, Wiley Interscience , New York, p.169-208, pp.133, 1998. 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, 臺北市. pp.61, 1995 王生圳, 半導體製程設備見習(高頻班)講義, 國家奈米元件實驗室 Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, ”A Normally-off AlGaN/GaN Transistor with RonA=2.6mΩcm2 and BVds=640V Using Conductivity Modulation,” IEDM Tech Dig. 1(2006). M. Hikita, M. Yanagihara, K. Nakazawa, H. Ueno, Y. Hirose, T. Ueda, Y. Uemoto, T. Tanaka, D. Ueda, and T. Egawa,” 350V/150A AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEDM Tech Dig. 803 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16074 | - |
| dc.description.abstract | 本論文提出利用水平選擇性成長氮化鎵奈米線技術與光致電化學氧化法將氮化鎵致換成氧化鎵技術,製作出氧化鎵/氮化鎵奈米線金氧半場效電晶體,並應用氮化鎵極化特性,在氮化鎵/氧化鎵表面產生二維電子氣,氮化鎵/藍寶石基板上產生負的空間電荷,解決了當閘極長度小於50nm時,碰到的短通道效應。且元件在直流與高頻特性上,獲得了相當優異的結果。
本文以固液氣三相反應機制,開發N-face氮化鎵水平定向成長技術,並以光致電氧化技術,研製氧化鎵/氮化鎵奈米線金氧半場效電晶體。並發現由於極化不連續,在氮化鎵與氧化鋁基板上會產生負的空間電荷,抑止了短通道效應。在50nm 線徑與 Lg=50nm下,獲得電流/功率截止頻 150/180GHz。 本文氧化鎵/氮化鎵奈米線寬約為50nm,且為等腰三角形結構,當閘極長度為50nm時,此元件具有120uA 飽和電流、轉導值為 77uS、電流開關比為10000、次臨界擺幅為90mV/dec且電流/功率截止頻150/180GHz。其物理機制可歸納於以下,利用奈米線水平成長以最低自由能與近無缺陷之單晶生長模式,在藍寶石基板與氮化鎵形成陡峭介面。由於極化場量不連續,在氮化鎵/藍寶石介面,提供負空間電荷;而在氧化鎵/氮化鎵介面,提供正空間電荷, 並在氧化鎵/氮化鎵表面形成二維電子氣以維持電中性。並估算此二維電子氣之空間侷限位能井,具備文獻上以複雜超晶格磊晶技術所欲達成之背向位能屏障功能;同時也因負空間電荷相斥效應,抑制短通道電流向基板之洩漏,而使電晶體有較優之直流與高頻特性。 | zh_TW |
| dc.description.abstract | This research aims to provide experimental solutions to resolve a long-standing issue, i.e., short channel effect, which hinders scaling-down of nano-electronics at gate length below 50nm. Taking advantage of our recent development of (i) horizontal and selective site growth of - gallium nitride (GaN) nanowires (NWs) on sapphire, (ii) photo-enhanced oxidation to transform GaN to crystalline gallium oxide (Ga2O3), and (iii) polarization engineering to provide 2D electron gas confined at the Ga2O3/GaN interfaces and negative space charge at the GaN/sapphire back interface, I realize a new structure design of GaN NW-MOSFETs that possess superior DC and RF characteristics to its planar III-Nitride HEMT using complicated material design. This thesis outlines further strategic development to reach GaN high gain NW-MOSFET with cut-off frequency exceeding >150GHz at 50nm gate length.
I demonstrated a top-gate Ga2O3/GaN NW-MOSFET by combining a Vapor-Liquid-Solid mechanism to grow high crystalline GaN NWs on sapphire and the photo-enhanced chemical oxidation process to transform the out-shell GaN to a thin Ga2O3 passivation layer. The short channel effect can be suppressed due to formation of negative space charge confined at the GaN/sapphire interface due to the polarization-discontinuity effect. I achieved high-speed modulation of the Ga2O3/GaN NW-MOSFET with a cut-off frequency =150GHz at a gate length of 50nm. The latter opens a route utilizing semiconductor NWs for high speed electronics applications. The transport measurement from a 50nm gate length Ga2O3/GaN NW-MOSFET with 50nm size of isosceles triangular cross-section revealed the following characteristics: saturation current of 120µA, transconductance of 77µS, current on/off ratio of 10000, subthreshold swing of 90mV/dec, and unity current/power gain bandwidth fT/fmax at 150/180GHz. Using a 3D diffusion and drift model analysis, we reconstructed the I-V characteristics which perfectly agree with the experimental observations. My analysis suggests that for the Ga2O3/GaN NW-MOSFET with 50nm gate length and 6nm-thick Ga2O3. The superior DC/RF characteristics can be ascribed the polarization-induced 2D electron gas confined at the abrupt and atomic smooth semi-polar Ga2O3/GaN interfaces, where the high crystallinity NW channel provides field effect mobility approaching the bulk value of GaN. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:00:07Z (GMT). No. of bitstreams: 1 ntu-101-D94941006-1.pdf: 3522446 bytes, checksum: 80e285f8ee86d57e4016dedbb7571c42 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 緒論 1
1-1 簡介 1 1-2 研究動機與目的 5 1-3 論文架構 6 第二章 長晶原理之介紹與氧化鎵/氮化鎵奈米線之製作 7 2-1 氮化鎵奈米線成長機制 7 2-2 長晶實驗儀器架設 12 2-3 光致電化學氧化法原理 13 2-4 長晶實驗製程 16 2-5 長晶結果 20 2-6 晶體材料分析 26 第三章 氧化鎵/氮化鎵奈米線電晶體元件製程 32 3-1 電子束微影技術 32 3-2 奈米線電晶體元件結構 36 3-3 氧化鎵/氮化鎵奈米線電晶體製程 40 第四章 氧化鎵/氮化鎵奈米線金氧半場效電晶體直流及高頻量測與討論 49 4-1 電晶體量測系統簡介 49 4-2 電晶體IDS-VDS與IDS-VG特性 51 4-3 高頻特性 60 第五章 結論 69 5-1 結論 69 5-2 未來展望 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電晶體 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 氧化鎵 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | nanowire | en |
| dc.subject | transistor | en |
| dc.subject | GaN | en |
| dc.subject | Ga2O3 | en |
| dc.title | 氧化鎵/氮化鎵奈米線金氧半場效電晶體之製作與特性研究 | zh_TW |
| dc.title | Fabrication and Characterization of Ga2O3/GaN single Nanowire Metal-Oxide-Semiconductor Field-effect Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 綦振瀛,林浩雄,管傑雄,胡振國,王維新 | |
| dc.subject.keyword | 氮化鎵,氧化鎵,奈米線,電晶體, | zh_TW |
| dc.subject.keyword | GaN,Ga2O3,nanowire,transistor, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
