請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16071完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐宏民 | |
| dc.contributor.author | Bor-Chun Chen | en |
| dc.contributor.author | 陳柏村 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:00:00Z | - |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-07 | |
| dc.identifier.citation | [1] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary pat- terns. European Conference on Computer Vision, 2004.
[2] Z.Cao,Q.Yin,J.Sun,andX.Tang.Facerecognitionwithlearning-baseddescriptor. IEEE Conference on Computer Vision and Pattern Recognition, 2010. [3] B.-C. Chen, Y.-H. Kuo, Y.-Y. Chen, K.-Y. Chu, and W. Hsu. Semi-supervised face image retrieval using sparse coding with identity constraint. ACM Multimedia, 2011. [4] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and vector quantization. International Conference on Machine Learning, 2011. [5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991. [6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of statistics, 2004. [7] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely – laplacian sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2010. [8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. International Conference on Very Large Databases, 1999. [9] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007. [10] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an image memorable? IEEE Conference on Computer Vision and Pattern Recognition, 2003. [11] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. European Conference on Computer Vision, 2008. [12] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. International Conference on Computer Vision, 2009. [13] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Describable visual attributes for face verification and image search. In IEEE Transactions on Pat- tern Analysis and Machine Intelligence (PAMI), Special Issue on Real-World Face Recognition, Oct 2011. [14] Y.-H.Kuo,H.-T.Lin,W.-H.Cheng,Y.-H.Yang,andW.H.Hsu.Unsupervisedauxil- iary visual words discovery for large-scale image object retrieval. IEEE Conference on Computer Vision and Pattern Recognition, 2011. [15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. IEEE Conference on Computer Vision and Pattern Recognition, 2006. [16] Y.-H. Lei, Y.-Y. Chen, L. Iida, B.-C. Chen, H.-H. Su, and W. H. Hsu. Photo search by face positions and facial attributes on touch devices. ACM Multimedia, 2011. [17] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2003. [18] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. International Conference on Machine Learning, 2009. [19] S. Milborrow and F. Nicolls. Locating facial features with an extended active shape model. European Conference on Computer Vision, 2008. [20] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE T P A TTERN ANAL, 2002. [21] U. Park and A. K. Jain. Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 2010. [22] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. International Conference on Machine Learning, 2007. [23] W. Scheirer, N. Kumar, K. Ricanek, T. E. Boult, and P. N. Belhumeur. Fusing with context: a bayesian approach to combining descriptive attributes. International Joint Conference on Biometrics, 2011. [24] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval based on multi-attribute queries. IEEE Conference on Computer Vision and Pattern Recogni- tion, 2011. [25] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object match- ing in videos. International Conference on Computer Vision, 2003. [26] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin. Context-based vision system for place and object recognition. International Conference on Computer Vision, 2003. [27] M. Turk and A. Pentland. Eigenfaces for recognition. J COGNITIVE NEUROSCI, 1991. [28] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conference on Computer Vision and Pattern Recognition, 2001. [29] D. Wang, S. C. Hoi, Y. He, and J. Zhu. Retrieval-based face annotation by weak label regularized local coordinate coding. ACM Multimedia, 2011. [30] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. IEEE Conference on Computer Vision and Pattern Recognition, 2010. [31] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2010. [32] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelli- gence (PAMI), 2009. [33] L. Wu, S. C. H. Hoi, and N. Yu. Semantics-preserving bag-of-words models and applications. Journal of IEEE Transactions on image processing, 2010. [34] Z. Wu, Q. Ke, J. Sun, and H.-Y. Shum. Scalable face image retrieval with identity- based quantization and multi-reference re-ranking. IEEE Conference on Computer Vision and Pattern Recognition, 2010. [35] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra- mid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2009. [36] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16071 | - |
| dc.description.abstract | Photos with people (e.g., family, friends, celebrities, etc.) are the ma- jor interest of users. Thus, with the exponentially growing photos, large- scale content-based face image retrieval is an enabling technology for many emerging applications. In this work, we aim to develop a scalable face image retrieval system which can integrate with auxiliary information to improve the retrieval result. To achieve this goal, we first apply sparse coding on local features extracted from face images combining with inverted indexing to construct an efficient and scalable face retrieval system. We then propose two different coding scheme that utilize partial identity information and automatically detected human attributes to construct semantic codewords for further improving the retrieval results. Using the proposed coding schemes, face images with large intra-class variances will still be quantized into similar semantic codewords if they share the same identity or similar human attributes. We investigate the effectiveness of different attributes and vital factors essen- tial for face retrieval. Experimental results show that the proposed methods can achieve salient retrieval results compared to existing methods in two public datasets. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:00:00Z (GMT). No. of bitstreams: 1 ntu-101-R99922029-1.pdf: 5197439 bytes, checksum: 2525b8f6484711bfd631281d1d840ae2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii 1 Introduction 1 2 Related work 7 3 Observations 10 4 Face Image Retrieval using Semantic Codewords 13 4.1 System Overview .............................. 13 4.2 Sparse Coding for Face Image Retrieval (SC) . . . . . . . . . . . . . . . 15 4.3 Sparse Coding with Identity Constraint (SC+I) . . . . . . . . . . . . . . 17 4.4 Attribute-Enhanced Sparse Coding (ASC) ................. 18 4.4.1 Sparse coding with dictionary selection (ASC-D) . . . . . . . . . 18 4.4.2 Sparse coding with attribute weights (ASC-W) . . . . . . . . . . 20 4.5 Attribute-Embedded Inverted Indexing (AEI) . . . . . . . . . . . . . . . 21 4.5.1 Image ranking and inverted indexing. . . . . . . . . . . . . . . . 21 4.5.2 Attribute-embedded inverted indexing . . . . . . . . . . . . . . . 22 5 Experiments 24 5.1 Face Image Retrieval with Identity Information . . . . . . . . . . . . . . 24 5.1.1 Experimental setting ........................ 24 5.1.2 Sparse coding retrieval performance . . . . . . . . . . . . . . . . 25 5.1.3 Sparse coding with identity constraint retrieval performance . . . 26 5.2 Face Image Retrieval with Human Attributes. . . . . . . . . . . . . . . . 28 5.2.1 Experimental setting ........................ 28 5.2.2 Baseline performance........................ 30 5.2.3 Experiments on attribute-enhanced sparse coding . . . . . . . . . 31 5.2.4 Experiments on attribute-embedded inverted indexing . . . . . . 33 5.2.5 Combining ASC-W and AEI.................... 34 5.2.6 Example results........................... 34 6 Conclusions36 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 人物屬性 | zh_TW |
| dc.subject | 語意編碼文字 | zh_TW |
| dc.subject | 稀疏編碼 | zh_TW |
| dc.subject | 人臉影像檢索 | zh_TW |
| dc.subject | human attributes | en |
| dc.subject | semantic codewords | en |
| dc.subject | sparse coding | en |
| dc.subject | Face image retrieval | en |
| dc.title | 利用語意文字進行大量人臉影像檢索 | zh_TW |
| dc.title | Large-Scale Face Image Retrieval using Semantic Codewords | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林軒田,劉庭祿,陳良弼 | |
| dc.subject.keyword | 人臉影像檢索,人物屬性,稀疏編碼,語意編碼文字, | zh_TW |
| dc.subject.keyword | Face image retrieval,human attributes,sparse coding,semantic codewords, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
