Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16071
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民
dc.contributor.authorBor-Chun Chenen
dc.contributor.author陳柏村zh_TW
dc.date.accessioned2021-06-07T18:00:00Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-07
dc.identifier.citation[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary pat- terns. European Conference on Computer Vision, 2004.
[2] Z.Cao,Q.Yin,J.Sun,andX.Tang.Facerecognitionwithlearning-baseddescriptor. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[3] B.-C. Chen, Y.-H. Kuo, Y.-Y. Chen, K.-Y. Chu, and W. Hsu. Semi-supervised face image retrieval using sparse coding with identity constraint. ACM Multimedia, 2011.
[4] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and vector quantization. International Conference on Machine Learning, 2011.
[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.
[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of statistics, 2004.
[7] S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely – laplacian sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. International Conference on Very Large Databases, 1999.
[9] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
[10] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an image memorable? IEEE Conference on Computer Vision and Pattern Recognition, 2003.
[11] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. European Conference on Computer Vision, 2008.
[12] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. International Conference on Computer Vision, 2009.
[13] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Describable visual attributes for face verification and image search. In IEEE Transactions on Pat- tern Analysis and Machine Intelligence (PAMI), Special Issue on Real-World Face Recognition, Oct 2011.
[14] Y.-H.Kuo,H.-T.Lin,W.-H.Cheng,Y.-H.Yang,andW.H.Hsu.Unsupervisedauxil- iary visual words discovery for large-scale image object retrieval. IEEE Conference on Computer Vision and Pattern Recognition, 2011.
[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. IEEE Conference on Computer Vision and Pattern Recognition, 2006.
[16] Y.-H. Lei, Y.-Y. Chen, L. Iida, B.-C. Chen, H.-H. Su, and W. H. Hsu. Photo search by face positions and facial attributes on touch devices. ACM Multimedia, 2011.
[17] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2003.
[18] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. International Conference on Machine Learning, 2009.
[19] S. Milborrow and F. Nicolls. Locating facial features with an extended active shape model. European Conference on Computer Vision, 2008.
[20] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE T P A TTERN ANAL, 2002.
[21] U. Park and A. K. Jain. Face matching and retrieval using soft biometrics. IEEE Transactions on Information Forensics and Security, 2010.
[22] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from unlabeled data. International Conference on Machine Learning, 2007.
[23] W. Scheirer, N. Kumar, K. Ricanek, T. E. Boult, and P. N. Belhumeur. Fusing with context: a bayesian approach to combining descriptive attributes. International Joint Conference on Biometrics, 2011.
[24] B. Siddiquie, R. S. Feris, and L. S. Davis. Image ranking and retrieval based on multi-attribute queries. IEEE Conference on Computer Vision and Pattern Recogni- tion, 2011.
[25] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object match- ing in videos. International Conference on Computer Vision, 2003.
[26] A. Torralba, K. P. Murphy, W. T. Freeman, and M. A. Rubin. Context-based vision system for place and object recognition. International Conference on Computer Vision, 2003.
[27] M. Turk and A. Pentland. Eigenfaces for recognition. J COGNITIVE NEUROSCI, 1991.
[28] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conference on Computer Vision and Pattern Recognition, 2001.
[29] D. Wang, S. C. Hoi, Y. He, and J. Zhu. Retrieval-based face annotation by weak label regularized local coordinate coding. ACM Multimedia, 2011.
[30] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for scalable image retrieval. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[31] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[32] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelli- gence (PAMI), 2009.
[33] L. Wu, S. C. H. Hoi, and N. Yu. Semantics-preserving bag-of-words models and applications. Journal of IEEE Transactions on image processing, 2010.
[34] Z. Wu, Q. Ke, J. Sun, and H.-Y. Shum. Scalable face image retrieval with identity- based quantization and multi-reference re-ranking. IEEE Conference on Computer Vision and Pattern Recognition, 2010.
[35] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra- mid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[36] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16071-
dc.description.abstractPhotos with people (e.g., family, friends, celebrities, etc.) are the ma- jor interest of users. Thus, with the exponentially growing photos, large- scale content-based face image retrieval is an enabling technology for many emerging applications. In this work, we aim to develop a scalable face image retrieval system which can integrate with auxiliary information to improve the retrieval result. To achieve this goal, we first apply sparse coding on local features extracted from face images combining with inverted indexing to construct an efficient and scalable face retrieval system. We then propose two different coding scheme that utilize partial identity information and automatically detected human attributes to construct semantic codewords for further improving the retrieval results. Using the proposed coding schemes, face images with large intra-class variances will still be quantized into similar semantic codewords if they share the same identity or similar human attributes. We investigate the effectiveness of different attributes and vital factors essen- tial for face retrieval. Experimental results show that the proposed methods can achieve salient retrieval results compared to existing methods in two public datasets.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:00:00Z (GMT). No. of bitstreams: 1
ntu-101-R99922029-1.pdf: 5197439 bytes, checksum: 2525b8f6484711bfd631281d1d840ae2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 i
Abstract ii
1 Introduction 1
2 Related work 7
3 Observations 10
4 Face Image Retrieval using Semantic Codewords 13
4.1 System Overview .............................. 13
4.2 Sparse Coding for Face Image Retrieval (SC) . . . . . . . . . . . . . . . 15
4.3 Sparse Coding with Identity Constraint (SC+I) . . . . . . . . . . . . . . 17
4.4 Attribute-Enhanced Sparse Coding (ASC) ................. 18
4.4.1 Sparse coding with dictionary selection (ASC-D) . . . . . . . . . 18
4.4.2 Sparse coding with attribute weights (ASC-W) . . . . . . . . . . 20
4.5 Attribute-Embedded Inverted Indexing (AEI) . . . . . . . . . . . . . . . 21
4.5.1 Image ranking and inverted indexing. . . . . . . . . . . . . . . . 21
4.5.2 Attribute-embedded inverted indexing . . . . . . . . . . . . . . . 22
5 Experiments 24
5.1 Face Image Retrieval with Identity Information . . . . . . . . . . . . . . 24
5.1.1 Experimental setting ........................ 24
5.1.2 Sparse coding retrieval performance . . . . . . . . . . . . . . . . 25
5.1.3 Sparse coding with identity constraint retrieval performance . . . 26
5.2 Face Image Retrieval with Human Attributes. . . . . . . . . . . . . . . . 28
5.2.1 Experimental setting ........................ 28
5.2.2 Baseline performance........................ 30
5.2.3 Experiments on attribute-enhanced sparse coding . . . . . . . . . 31
5.2.4 Experiments on attribute-embedded inverted indexing . . . . . . 33 5.2.5 Combining ASC-W and AEI.................... 34
5.2.6 Example results........................... 34
6 Conclusions36
Bibliography 37
dc.language.isoen
dc.subject人物屬性zh_TW
dc.subject語意編碼文字zh_TW
dc.subject稀疏編碼zh_TW
dc.subject人臉影像檢索zh_TW
dc.subjecthuman attributesen
dc.subjectsemantic codewordsen
dc.subjectsparse codingen
dc.subjectFace image retrievalen
dc.title利用語意文字進行大量人臉影像檢索zh_TW
dc.titleLarge-Scale Face Image Retrieval using Semantic Codewordsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林軒田,劉庭祿,陳良弼
dc.subject.keyword人臉影像檢索,人物屬性,稀疏編碼,語意編碼文字,zh_TW
dc.subject.keywordFace image retrieval,human attributes,sparse coding,semantic codewords,en
dc.relation.page40
dc.rights.note未授權
dc.date.accepted2012-08-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved