Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16057
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇永成
dc.contributor.authorTien-Yin Kuoen
dc.contributor.author郭恬吟zh_TW
dc.date.accessioned2021-06-07T17:59:32Z-
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-08-08
dc.identifier.citation1.Andersen, T.G., T. Bollerslev, P.F. Christoffersen, and F.X. Diebold (2007), “Practical Volatility and Correlation Modeling for Financial Market Risk Management,” The Risk of Financial Institutions, pp. 513-548.
2.Angelidis, T., A. Benos, and S. Degiannakis (2004), “The Use of GARCH Models in VaR Estimation,” Statistical Methodology, Vol. 1, pp. 105-128.
3.Bank for International Settlements: www.bis.org.
4.Basak, S. and A. Shapiro (2001), “Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices,” Review of Financial Studies, Vol.14, pp. 371–405.
5.Berkowitz, J., and J. O’Brien (2002), “How Accurate Are Value-at-Risk Models at Commercial Banks?” Journal of Finance, Vol.57, pp. 1093-1111.
6.BIS, Basel Committee on Banking Supervision (1988), “International Convergence of Capital Measurement and Capital Standards.”
7.BIS, Basel Committee on Banking Supervision (1996), “Supervisory Framework for the Use of Back-testing in Conjunction with Internal Models Approach to Market Risk Capital Requirements.”
8.BIS, Basel Committee on Banking Supervision (1996 to 1998), “Amendment to the Capital Accord to Incorporate Market Risks.”
9.BIS, Basel Committee on Banking Supervision (2004), “Basel II International Convergence of Capital Measurement and Capital Standards. ”
10.BIS, Basel Committee on Banking Supervision (2008), “ Comprehensive Strategy to Address the Lessons of the Banking Crisis Announced by the Basel Committee. ”
11.Bollerslev,T.(1986),“Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol.31, pp. 307–327.
12.Bollerslev, T. (1987), “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return,” The Review of Economics and Statistics, Vol. 69, pp.542-547.
13.Burns, P. (2002), “The Quality of Value at Risk via Univariate GARCH,” Working Paper, Burns Statistic.
14.Cassidy, C., and M. Gizycki (1997), “Measuring Traded Market Risk :Value at Risk and Backtesting Techniques,” Research Discussion Paper 9708, Reserve Bank of Australia.
15.He, C., and T. Teräsvirta (1999), “Properties of Moments of a Family of GARCH Processes,” Journal of Econometrics, Vol.92, pp.173-192.
16.Dowd, K. (1999), “A Value at Risk Approach to Risk-Return Analysis,” Journal of portfolio management, Vol.25, pp.60-67.
17.Engle, J. and M.Gizycki (1999), “Conservatism, Accuracy and Efficiency: Comparing Value-at-Risk models,” Australian Prudential Regulation Authority Working Paper Series no.wp0002.
18.Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation,” Econometrica, Vol.50, pp. 987-1008.
19.Engel, R. F., D. M. Lilien, and R. P. Robins (1987), “Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model,” Econometrica, Vol.55, pp. 391-407.
20.Engle, R. F., and V. K. Ng (1993), “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, Vol.48, pp. 1749-1778.
21.Engle, R. F., and Manganelli Simone (2001), “Value at Risk Models in Finance,” European Central Bank Working Paper Series,no.75.
22.Guermat, C. and R. D. F. Harris (2002), “Robust Conditional Variance Estimation and Value-at-Risk,” Journal of Risk, Vol.4, pp.25-41.
23.Gupta, A. and B. Liang (2005), “Do Hedge Funds Have Enough Capital? A Value-at-Risk Approach,”Journal of Financial Economics, Vol.77, pp.219-253.
24.Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993), “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, Vol.48, pp. 1179-1801.
25.Hansen, P.R. and A.Lunde (2005), “A Forcast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1),” Journal of Applied Econometrics, Vol.20, pp. 873-889 .
26.Hentschel, L. (1995), “All in the Family Nesting Symmetric and Asymmetric GARCH Models,” Journal of Financial Economics, Vol.39, pp. 71-104.
27.Inui, K., M. Kijima, and A. Kitano(2005), “VaR Is Subject to Significant Positive Bias,” Statistics & Probability Letters, Vol.72, pp.299-311.
28.Irina N. K. and Svetlozar T. R., “Value at Risk: Recent Advances, ” Chapman & Hall / CRC, 2000, pp.801-858.
29.Jorion, P. (2001), Value-at-Risk: The New Benchmark for Controlling Market Risk, 2nd Edition.
30.Kupiec, P. H. (1998), “Stress Testing in a Value at Risk Framework,” Journal of derivatives, Vol.6, pp.7-24.
31.Lin, Chu-Hsing and Shan-Shan Shen (2006), “Can the Student-t Distribution Provide Accurate Value at Risk?” The Journal of Risk Finance, Vol.7, pp. 292-300.
32.Mandelbrot, B. (1963), “The Variation of Certain Speculative Prices,” The Journal of Business, Vol.36, pp. 394-419.
33.Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica, Vol.59, pp. 347-370.
34.Robert Engle (2004), “Risk and Volatility: Econometric Models and Financial Practices,” The American Economic Review, Vol.94,No.3, pp.405-420.
35.Schwert, G.W.(1989), “Why Does Stock Market Volatility Change Over Time,” Journal of Finance,Vol.44,pp.1115-1153.
36.So, M. K. P. and P. L. H. Yu (2006), “Empirical Analysis of GARCH Models in Value at Risk Estimation,”Journal of International Financial Markets, Institutions & Money, Vol.16, pp.180-197.
37.Stavros Degiannakis and Evdokia Xekalaki (2005), “ Autoregressive Conditional Heteroscedasticity (ARCH) models: A Review, ” Quality Technology and Quantitative Management, Vol. 1, No. 2, pp. 271-324.
38.Su, Yong-chern, Chiang, Hui-ching, and Han-ching Huang (2011), “Modeling Value-at-Risk of Financial Holdings---A Comparison of Symmetric and Asymmetric Models,” Asia-Pacific Business Research Conference, Kuala Lumpur, Malaysia.
39.Su, Yong-chern, Wang, Serena, and Han-ching Huang (2010), “Modeling Value at Risk of Financial Holding Company: Time Varying vs. Traditional Models, ” Bank and Banking System (Econlit), Vol. 5, Issue 1,pp. 76-86.
40.Su, Yong-chern, Lin, Chihsien and Peiwen Chen(2011), “Asymmetric GARCH Value at Risk of QQQQ, ” International Research Journal of Finance and Economics (EconLit), Issue 65, pp.112-123.
41.Suliman Zakaria Suliman Abdalla (2012), “ Modelling Exchange Rate Volatility using GARCH Models: Empirical Evidence form Arab Countries, ” International Journal of Economics and Finance, Vol.4, No.3, pp.216-229.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16057-
dc.description.abstract本研究以對稱的GARCH模型,及兩種不對稱的GARCH模型(旋轉效果的GJR-GARCH模型,及平移效果的NA -GARCH模型)為架構,並引進四種不同的報酬結構,分別估計歐元兌美元匯率報酬率之VaR,探討不同的GARCH模型及報酬結構組合中,何種模型對於歐債危機期間歐元兌美元匯率報酬率之預測能力及風險管理能力最佳。
本研究之主要發現如下:
(1)不對稱GARCH模型不一定絕對優於對稱GARCH模型。
(2)NA-GARCH模型的穿透次數平均而言較少,若加進其他指標進行全面分析, 在NA-GARCH模型中,以ARMA-NA-GARCH模型估計歐元兌美元匯率VaR之表現最佳,亦為歐元兌美元匯率最適合且最有效的風險管理模型。
(3)大致而言,穿透次數愈少的模型,其資本準備提列亦愈高,此反映了資本效率與保守性之兩難。
(4)相較於GJR-GARCH模型,NA-GARCH模型所致之不對稱效果相對較小,此較小的不對稱效果應用於資料型態相對穩定的匯率VaR估計及風險管理成效較好。
zh_TW
dc.description.abstractIn this paper, we use a symmetric GARCH model and two asymmetric GARCH models (innovation-rotated GJR-GARCH and level-shifted NA-GARCH models) with various forms of mean equations to find out the most appropriate model for estimating the VaR of EUR/USD exchange rates during the European debt crisis. We compare the estimated VaR with realized return and evaluate the performance of the GARCH models in managing the market risk of EUR/USD exchange rates based on the indicators such as violation numbers, mean violation, aggregate violation, and maximum violation. In our empirical studies, the major findings are listed below:
(1)Asymmetric GARCH models not necessarily outperform symmetric GARCH models all the time.
(2)On average, the NA-GARCH models outperform other GARCH models in terms of violation numbers. Among NA-GARCH models with different forms of mean equations, we find that ARMA(1,1)-NA-GARCHM(1,1) is superior than other GARCH models in estimating the VaR of EUD/USD exchange rates in terms of violation numbers, aggregate violation range, and maximum violation range . Therefore, ARMA(1,1)-NA-GARCHM(1,1) is the best-fitting model and the most effective model in risk management of EUD/USD exchange rates.
(3)In general, the less occurrence of violation is accompanied with the larger provision of capital reserve. It reflects the tradeoff between capital efficiency and conservativeness.
(4)Compared with GJR-GARCH models, the relatively smaller asymmetric effect of NA-GARCH models (ARMA(1,1)-NA-GARCHM(1,1)) fits better with the relatively steady feature of the foreign exchange rates.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:59:32Z (GMT). No. of bitstreams: 1
ntu-101-R97723006-1.pdf: 779553 bytes, checksum: 80a90c9e71587759557d42544916a2b4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContent
Chapter 1 Introduction 7
1.1 Purposes and Motivation 7
1.2 Framework 10
Chapter 2 Basel Accord and VaR 11
2.1 The Basel Committee 11
2.2 1988 Basel I Accord 13
2.3 1996 Amendment 14
2.4 Basel II Accord 15
2.5 Basel Ш Accord 17
2.6 Value-at-Risk(VaR) 20
Chapter 3 Literature Review 22
3.1 Volatility Modeling with GARCH Effect 22
3.2 Related Literature-Application of GARCH Models 23
Chapter 4 Data 29
4.1 Introduction to Foreign Exchange Market and EUR/USD Exchange Rate 29
4.2 Holding Period and Daily Profit and Loss 30
Chapter 5 Methodology 31
5.1 GARCHM(1,1) 32
5.2 GJR-GARCHM(1,1) 33
5.3 NA-GARCHM(1,1) 34
Chapter 6 Empirical Results 36
6.1 Model Robustness 36
6.2 Parameter Estimates 36
6.3 Out-sample Forward Test under Different GARCH models 40
6.4 Comparison of GJR and NA- GARCH models 45
Chapter 7 Conclusion 47
References 49
Figure
Figure1: Distribution of Daily Profit and Loss of EUD/USD Exchange Rate 55
Figure 2: P&L Return and VaR in GARCHM(1,1) 56
Figure 3: P&L Return and VaR in AR(1)-GARCHM(1,1) 57
Figure 4: P&L Return and VaR in MA(1)-GARCHM(1,1) 58
Figure 5: P&L Return and VaR in ARMA(1,1)-GARCHM(1,1) 59
Figure 6: P&L Return and VaR in GJR-GARCHM(1,1) 60
Figure 7: P&L Return and VaR in AR(1)- GJR-GARCHM(1,1) 61
Figure 8: P&L Return and VaR in MA(1)-GJR-GARCHM(1,1) 62
Figure 9: P&L Return and VaR in ARMA(1,1)-GJR-GARCHM(1,1) 63
Figure 10: P&L Return and VaR in NA-GARCHM(1,1) 64
Figure 11: P&L Return and VaR in MA(1)- NA-GARCHM(1,1) 65
Figure 12: P&L Return and VaR in ARMA(1,1)- NA-GARCHM(1,1) 66
Table
Table 1: Returns Statistics Summary for EUD/USD Exchange Rate (2008/09/15 to 2012/02/22) 67
Table 2: Likelihood Ratio Test 68
Table 3: Parameters Estimated in GARCHM(1,1) 69
Table 4: Parameters Estimated in AR(1)-GARCHM(1,1) 70
Table 5: Parameters Estimated in MA(1)-GARCHM(1,1) 71
Table 6: Parameters Estimated in ARMA(1,1)-GARCHM(1,1) 72
Table 7: Parameters Estimated in GJR-GARCHM(1,1) 73
Table 8: Parameters Estimated in AR(1)-GJR-GARCHM(1,1) 74
Table 9: Parameters Estimated in MA(1)-GJR-GARCHM(1,1) 75
Table 10: Parameters Estimated in ARMA(1,1)-GJR-GARCHM(1,1) 76
Table 11: Parameters Estimated in NA-GARCHM(1,1) 77
Table 12: Parameters Estimated in AR(1)-NA-GARCHM(1,1) 78
Table 13: Parameters Estimated in MA(1)-NA-GARCHM(1,1) 79
Table 14: Parameters Estimated in ARMA(1,1)-NA-GARCHM(1,1) 80
Table 15: Violation Number Allowed in Basel Accord 81
Table 16: Violation Number and Mean VaR in GARCH Models at 95% Confidence Level 81
Table 17: Violation Number and Mean VaR in GARCH Models at 99% Confidence Level 82
Table 18: Model Comparison under 95% Confidence Level 83
Table 19: Model Comparison under 99% Confidence Level 84
dc.language.isoen
dc.subject市場風險zh_TW
dc.subject風險值zh_TW
dc.subjectGARCHzh_TW
dc.subjectGJR-GARCHzh_TW
dc.subjectNA-GARCHzh_TW
dc.subjectMarket Risken
dc.subjectNA-GARCHen
dc.subjectGJR-GARCHen
dc.subjectGARCHen
dc.subjectVaRen
dc.title歐債危機期間歐元兌美元匯率之不對稱GARCH市場風險值研究zh_TW
dc.titleAsymmetric GARCH Value-at-Risk of EUD/USD during the European Debt Crisisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖咸興,黃漢青
dc.subject.keyword市場風險,風險值,GARCH,GJR-GARCH,NA-GARCH,zh_TW
dc.subject.keywordMarket Risk,VaR,GARCH,GJR-GARCH,NA-GARCH,en
dc.relation.page84
dc.rights.note未授權
dc.date.accepted2012-08-08
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
761.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved