請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | |
| dc.contributor.author | Sui-Ying Hsu | en |
| dc.contributor.author | 許隨贏 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:58:54Z | - |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | 1]S. R. Kennedy, 'Photonics Applications of Nanostructured Thin Films,' Department of Electrical and Computer Engineering, University of Alberta, 2004.
[2]M. Faraday, 'The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,' vol. 147, pp. 145-187, 1857. [3]R. Nahrwold, Ann. Physik, vol. 31, 1887. [4]A. Kundt, Ann. Physik, vol. 34, 1888. [5]J. C. Maxwell, A Treatise on Electricity and Magnetism, 3 ed.: Stanford: Academic Reprints, 1891. [6]H. A. Macleod, Thin-Film Optical Filters, 3 ed.: Taylor & Francis, 2001. [7]L. I. Maissel and R. Glang, Handbook of Thin Film Technology: McGraw-Hill Book Company, 1983. [8]R. F. Bunshah, 'Handbook of Deposition Technologies for Films and Coatings - Science, Technology and Applications (2nd Edition),' ed: William Andrew Publishing/Noyes, 1994. [9]M. Ohring, The Materials Science of Thin Films: Academic Press, 1992. [10]B. N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching: Wiely, 1980. [11]J. C. Sit, D. Vick, K. Robbie, and M. J. Brett, 'Thin film microstructure control using glancing angle deposition by sputtering,' Journal of Materials Research, vol. 14, pp. 1197-1199, Apr 1999. [12]E. B. Graper, 'Evaporation Characteristics of Materials from an Electron-Beam Gun,' Journal of Vacuum Science & Technology, vol. 8, pp. 333-&, 1971. [13]E. B. Graper, 'Evaporation Characteristics of Materials from an Electron-Beam Gun 2,' Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 5, pp. 2718-2723, Jul-Aug 1987. [14]Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, 'A dielectric omnidirectional reflector,' Science, vol. 282, pp. 1679-1682, Nov 1998. [15]J. K. Kim, H. Luo, Y. G. Xi, J. M. Shah, T. Gessmann, and E. F. Schubert, 'Light extraction in GaInN light-emitting diodes using diffuse omnidirectional reflectors,' Journal of the Electrochemical Society, vol. 153, pp. G105-G107, 2006. [16]Y. Sun and S. R. Forrest, 'Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,' Nature Photonics, vol. 2, pp. 483-487, Aug 2008. [17]J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, 'Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,' Nature Photonics, vol. 1, pp. 176-179, Mar 2007. [18]C. L. Haynes and R. P. Van Duyne, 'Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,' Journal of Physical Chemistry B, vol. 105, pp. 5599-5611, Jun 2001. [19]Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, 'Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,' Optical Engineering, vol. 39, pp. 1863-1868, Jul 2000. [20]M. M. Hawkeye and M. J. Brett, 'Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,' Journal of Vacuum Science & Technology A, vol. 25, pp. 1317-1335, Sep-Oct 2007. [21]S. R. Kennedy and M. J. Brett, 'Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition,' Journal of Vacuum Science & Technology B, vol. 22, pp. 1184-1190, May-Jun 2004. [22]J. Wang, H. C. Huang, S. V. Kesapragada, and D. Gall, 'Growth of Y-shaped nanorods through physical vapor deposition,' Nano Letters, vol. 5, pp. 2505-2508, Dec 2005. [23]M. Suzuki and Y. Taga, 'Anisotropy in the Optical-Absorption of Ag-SiO2 Thin-Films with Oblique Columnar Structures,' Journal of Applied Physics, vol. 71, pp. 2848-2854, Mar 1992. [24]K. Robbie, M. J. Brett, and A. Lakhtakia, 'First Thin-Film Realization of a Helicoidal Bianisotropic Medium,' Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 13, pp. 2991-2993, Nov-Dec 1995. [25]I. J. Hodgkinson and Q. H. Wu, 'Practical designs for thin film wave plates,' Optical Engineering, vol. 37, pp. 2630-2633, Sep 1998. [26]A. Lisfi and J. C. Lodder, 'Magnetic domains in Co thin films obliquely sputtered on a polymer substrate,' Physical Review B, vol. 63, May 2001. [27]J. P. Singh, D. L. Liu, D. X. Ye, R. C. Picu, T. M. Lu, and G. C. Wang, 'Metal-coated Si springs: Nanoelectromechanical actuators,' Applied physics letters, vol. 84, pp. 3657-3659, May 2004. [28]G. G. Zhang and Y. P. Zhao, 'Mechanical characteristics of nanoscale springs,' Journal of Applied Physics, vol. 95, pp. 267-271, Jan 2004. [29]S. R. V. Kesapragada, 'Growth, Structure and Applications of Nanorods by Glancing Angle Deposition,' Materials Science & Engineering, Rensselaer Polytechnic Institute, 2006. [30]B. Oregan and M. Gratzel, 'A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films,' Nature, vol. 353, pp. 737-740, Oct 1991. [31]C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, and M. Gratzel, 'Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,' Acs Nano, vol. 3, pp. 3103-3109, Oct 2009. [32]M. Gratzel, 'Photoelectrochemical cells,' Nature, vol. 414, pp. 338-344, Nov 2001. [33]A. Hagfeldt and M. Gratzel, 'Light-Induced Redox Reactions in Nanocrystalline Systems,' Chemical Reviews, vol. 95, pp. 49-68, Jan-Feb 1995. [34]Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug, and J. R. Durrant, 'Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films,' Journal of Physical Chemistry, vol. 100, pp. 20056-20062, Dec 1996. [35]M. A. Green, Solar cells: operating principles, technology, and system applications: Prentice-Hall, 1982. [36]Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, 'Fabrication of an efficient solid-state dye-sensitized solar cell,' Langmuir, vol. 19, pp. 3572-3574, Apr 2003. [37]N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, 'Very Efficient Visible-Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface-Area Polycrystalline Titanium-Dioxide Films,' Journal of the American Chemical Society, vol. 110, pp. 1216-1220, Feb 1988. [38]R. Eichberger and F. Willig, 'Ultrafast Electron Injection from Excited Dye Molecules into Semiconductor Electrodes,' Chemical physics, vol. 141, pp. 159-173, Feb 1990. [39]S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, 'Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells,' Electrochimica Acta, vol. 51, pp. 3814-3819, May 2006. [40]L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes, and M. Gratzel, 'Influence of Sodium Cations of N3 Dye on the Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells,' Chemphyschem, vol. 10, pp. 1117-1124, May 2009. [41]J. Zhang, G. T. Yang, Q. Sun, J. Zheng, P. Q. Wang, Y. J. Zhu, and X. Z. Zhao, 'The improved performance of dye sensitized solar cells by bifunctional aminosilane modified dye sensitized photoanode,' Journal of Renewable and Sustainable Energy, vol. 2, Jan 2010. [42]M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, and S. Isoda, 'Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,' Journal of Physical Chemistry B, vol. 110, pp. 13872-13880, Jul 2006. [43]J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, 'Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film,' Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, Feb 2006. [44]A. Hagfeldt and M. Gratzel, 'Molecular photovoltaics,' Accounts of chemical research, vol. 33, pp. 269-277, May 2000. [45]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Y. Han, 'Dye-sensitized solar cells with conversion efficiency of 11.1%,' Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 45, pp. L638-L640, Jul 2006. [46]T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Gratzel, 'Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins,' Angewandte Chemie-International Edition, vol. 49, pp. 6646-6649, 2010. [47]A. Hauch and A. Georg, 'Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells,' Electrochimica Acta, vol. 46, pp. 3457-3466, Aug 2001. [48]X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, T. Kida, and E. Abe, 'Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell,' Journal of Electroanalytical Chemistry, vol. 570, pp. 257-263, Sep 2004. [49]Q. W. Jiang, G. R. Li, and X. P. Gao, 'Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells,' Chemical Communications, pp. 6720-6722, 2009. [50]N. Papageorgiou, W. F. Maier, and M. Gratzel, 'An iodine/triiodide reduction electrocatalyst for aqueous and organic media,' Journal of the Electrochemical Society, vol. 144, pp. 876-884, Mar 1997. [51]Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, 'Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells,' Chemistry Letters, pp. 1060-1061, Oct 2002. [52]Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, 'I-/I-3(-) redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells,' Journal of Photochemistry and Photobiology a-Chemistry, vol. 164, pp. 153-157, Jun 2004. [53]K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, 'Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells,' Chemistry Letters, vol. 32, pp. 28-29, Jan 2003. [54]M. Wang, Y. Lin, X. W. Zhou, X. R. Xiao, L. Yang, S. J. Feng, and X. P. Li, 'Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells,' Materials Chemistry and Physics, vol. 107, pp. 61-66, Jan 2008. [55]Z. Huang, X. H. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li, W. B. Song, L. Q. Chen, and Q. B. Meng, 'Application of carbon materials as counter electrodes of dye-sensitized solar cells,' Electrochemistry Communications, vol. 9, pp. 596-598, Apr 2007. [56]M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Gratzel, 'CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells,' Journal of the American Chemical Society, vol. 131, pp. 15976-+, Nov 2009. [57]X. M. Fang, T. L. Ma, G. Q. Guan, M. Akiyama, and E. Abe, 'Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness,' Journal of Photochemistry and Photobiology a-Chemistry, vol. 164, pp. 179-182, Jun 2004. [58]P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Z. Lan, and Q. H. Li, 'Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode,' Electrochimica Acta, vol. 53, pp. 4161-4166, May 2008. [59]T. N. Murakami and M. Gratzel, 'Counter electrodes for DSC: Application of functional materials as catalysts,' Inorganica Chimica Acta, vol. 361, pp. 572-580, Feb 2008. [60]C. H. Yoon, R. Vittal, J. Lee, W.-S. Chae, and K.-J. Kim, 'Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode,' Electrochimica Acta, vol. 53, pp. 2890-2896, Feb 15 2008. [61]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, and M. Gratzel, 'Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers,' Journal of the American Chemical Society, vol. 127, pp. 16835-16847, Dec 2005. [62]S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode,' Chemical Communications, pp. 4004-4006, 2006. [63]H. W. Lin, S. Y. Ku, H. C. Su, C. W. Huang, Y. T. Lin, K. T. Wong, and C. C. Wu, 'Highly efficient visible-blind organic ultraviolet photodetectors,' Advanced Materials, vol. 17, pp. 2489-+, Oct 2005. [64]C. J. Yang, T. Y. Cho, C. L. Lin, and C. C. Wu, 'Energy-recycling high-contrast organic light-emitting devices,' Journal of the Society for Information Display, vol. 16, pp. 691-694, Jun 2008. [65]M. Gratzel, 'Perspectives for dye-sensitized nanocrystalline solar cells,' Progress in Photovoltaics, vol. 8, pp. 171-185, Jan-Feb 2000. [66]N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, 'Very Efficient Visible-Light Energy Harvesting and Conversion by Spectral Sensitization of High Surface-Area Polycrystalline Titanium-Dioxide Films ' Journal of the American Chemical Society, vol. 110, pp. 1216-1220, Feb 1988. [67]K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, 'A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode,' Journal of Materials Chemistry, vol. 20, pp. 4067-4073, 2010. [68]C. C. Chen, B. C. Huang, M. S. Lin, Y. J. Lu, T. Y. Cho, C. H. Chang, K. C. Tien, S. H. Liu, T. H. Ke, and C. C. Wu, 'Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials,' Organic Electronics, vol. 11, pp. 1901-1908, Dec 2010. [69]L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen, and A. I. Tsai, 'Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells,' Journal of Organic Chemistry, vol. 75, pp. 4778-4785, Jul 2010. [70]Q. Wang, J. E. Moser, and M. Gratzel, 'Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,' Journal of Physical Chemistry B, vol. 109, pp. 14945-14953, Aug 2005. [71]L. M. Peter, N. W. Duffy, R. L. Wang, and K. G. U. Wijayantha, 'Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells,' Journal of Electroanalytical Chemistry, vol. 524, pp. 127-136, May 2002. [72]K. M. Lee, C. Y. Hsu, P. Y. Chen, M. Ikegami, T. Miyasaka, and K. C. Ho, 'Highly porous PProDOT-Et-2 film as counter electrode for plastic dye-sensitized solar cells,' Physical Chemistry Chemical Physics, vol. 11, pp. 3375-3379, 2009. [73]K. Robbie, M. J. Brett, and A. Lakhtakia, 'Chiral sculptured thin films,' Nature, vol. 384, pp. 616-616, Dec 1996. [74]B. Dick, M. J. Brett, and T. Smy, 'Controlled growth of periodic pillars by glancing angle deposition,' Journal of Vacuum Science & Technology B, vol. 21, pp. 23-28, Jan-Feb 2003. [75]M. Malac and R. F. Egerton, 'Observations of the microscopic growth mechanism of pillars and helices formed by glancing-angle thin-film deposition,' Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 19, pp. 158-166, Jan-Feb 2001. [76]C. M. Zhou and D. Gall, 'Surface patterning by nanosphere lithography for layer growth with ordered pores,' Thin Solid Films, vol. 516, pp. 433-437, Dec 2007. [77]B. Dick, M. J. Brett, T. Smy, M. Belov, and M. R. Freeman, 'Periodic submicrometer structures by sputtering,' Journal of Vacuum Science & Technology B, vol. 19, pp. 1813-1819, Sep-Oct 2001. [78]K. Robbie and M. J. Brett, 'Sculptured thin films and glancing angle deposition: Growth mechanics and applications,' Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 15, pp. 1460-1465, May-Jun 1997. [79]C. H. Tsai, S. Y. Hsu, C. Y. Lu, Y. T. Tsai, T. W. Huang, Y. F. Chen, Y. H. Jhang, and C. C. Wu, 'Influences of textures in Pt counter electrode on characteristics of dye-sensitized solar cells,' Organic Electronics, vol. 13, pp. 199-205, Jan 2012. [80]K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, 'Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,' Review of Scientific Instruments, vol. 75, pp. 1089-1097, Apr 2004. [81]Physical Vapor Deposition Metal deposition. Available: http://www.cleanroom.byu.edu/metal.phtml [82]L. Abelmann and C. Lodder, 'Oblique evaporation and surface diffusion,' Thin Solid Films, vol. 305, pp. 1-21, Aug 1997. [83]M. W. Seto, B. Dick, and M. J. Brett, 'Microsprings and microcantilevers: studies of mechanical response,' Journal of Micromechanics and Microengineering, vol. 11, pp. 582-588, Sep 2001. [84]P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, 'All-polymer optoelectronic devices,' Science, vol. 285, pp. 233-236, Jul 1999. [85]G. A. Niklasson, C. G. Granqvist, and O. Hunderi, 'Effective Medium Models for the Optical-Properties of Inhomogeneous Materials,' Applied Optics, vol. 20, pp. 26-30, 1981. [86]D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, 'Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,' Applied physics letters, vol. 93, Sep 2008. [87]K. Baedeker, 'Electrical conductivity and thermoelectric power of some heavy metal compounds,' Ann. Phys. (Leipzig), vol. 22, 1907. [88]楊明輝, 透明導電膜: 藝軒圖書出版社, 2008. [89]K. L. Chopra, S. Major, and D. K. Pandya, 'Transparent Conductors - A Status Review,' Thin Solid Films, vol. 102, pp. 1-46, 1983. [90]Y. Shigesato and D. C. Paine, 'A Microstructural Study of Low-Resistivity Tin-Doped Indium Oxide Prepared by DC Magnetron Sputtering,' Thin Solid Films, vol. 238, pp. 44-50, Jan 1994. [91]X. Yan, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, 'Electrically conductive thin-film color filters made of single-material indium-tin-oxide,' Journal of Applied Physics, vol. 109, May 2011. [92]X. Yan, F. W. Mont, D. J. Poxson, M. F. Schubert, J. K. Kim, J. Cho, and E. F. Schubert, 'Refractive-Index-Matched Indium-Tin-Oxide Electrodes for Liquid Crystal Displays,' Japanese Journal of Applied Physics, vol. 48, Dec 2009. [93]J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, 'Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,' Advanced Materials, vol. 20, pp. 801-+, Feb 2008. [94]J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, 'GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,' Applied physics letters, vol. 88, Jan 2006. [95]K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, 'A birefringent and transparent electrical conductor,' Advanced Functional Materials, vol. 18, pp. 2147-2153, Aug 2008. [96]M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, 'Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,' Applied physics letters, vol. 90, Apr 2007. [97]L. C. Chen, C. C. Chen, Y. T. Sung, and Y. Y. Hsu, 'Oblique-Angle Sputtering Effects on Characteristics of Nanocolumnar Structure Anisotropic Indium Tin Oxide Films,' Journal of the Electrochemical Society, vol. 156, pp. H471-H474, 2009. [98]C. H. Chiu, P. C. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, 'Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,' Optics Express, vol. 17, pp. 21250-21256, Nov 2009. [99]Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, 'Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,' Journal of Materials Research, vol. 23, pp. 2500-2505, Sep 2008. [100]J. W. Leem and J. S. Yu, 'Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/mu c-Si:H tandem thin film solar cells,' Optics Express, vol. 19, pp. A258-A268, May 2011. [101]H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, 'Tilting angle of nanocolumnar films fabricated by oblique angle deposition,' Journal of Vacuum Science & Technology B, vol. 30, May-Jun 2012. [102]I. J. A. Woollam Co., Guide to Using WVASE32: J. A. Woollam Co., Inc., 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16038 | - |
| dc.description.abstract | 近年來光電元件效率提升愈來愈重要,除了在新材料的研發上努力之外,引進具有奈米結構的薄膜實為另一有效的方向。具有奈米結構的薄膜因在光電特性上具有可調性,近年來已有廣泛的應用。此薄膜因可以隨著製程方法來控制其光電特性及幾何結構形貌,所以可以在光電元件中加入奈米結構薄膜,改善原本元件的結構,用以增加元件效率。
本文首先探討利用有表面紋理結構的氟摻雜氧化錫透明導電基板鍍上白金,作為染料敏化太陽能電池的對電極,而因為表面具有紋理結構的基板有程度不一的表面起伏特性,在鍍上白金後可以藉由表面接觸面積的增加來增加與電解質的反應,有效的提升染料敏化太陽電池的元件效率。 本文接著使用斜角蒸鍍法來製作奈米結構薄膜,斜角蒸鍍法是利用原子在沉積過程中蒸鍍源和基板有傾斜角的情況製作而成。此種薄膜可以依據不同的成長條件,而且有不同的光電特性及幾何結構,而可以彈性的應用在光電元件上。 本文使用斜角蒸鍍技術來製作染料敏化太陽能電池所需的白金對電極。利用在大入射角的條件製作具有較高孔隙率的白金對電極,也是利用表面接觸面積的增加來有效增加元件效率。最後我們利用斜角蒸鍍技術製作氧化銦鍚薄膜;在不同的入射角條件下,氧化銦錫薄膜會有不同的光電特性,如:折射率、穿透率及片電阻。最後本文則對斜角蒸鍍薄膜在不同的退火條件下所擁有的光電特性進行分析,找出退火溫度和時間對薄膜特性的影響。提供了日後光電元件應用之基礎。 | zh_TW |
| dc.description.abstract | In recent years, the improvement of efficiency of optoelectronic devices has become more and more important. As such, the nano-structured thin films can greatly benefit device efficiency. The nanostructured thin films could have tunable optical and electrical properties and already have wide applications in optoelectronics.
In this thesis, first we used the fluorine-doped tin oxide (FTO) with different texture structures to fabricate nanotextured Pt counter electrodes of dye-sensitized solar cells (DSSCs). With different surface roughnesses in textured FTO substrates, the reactive surface areas between the electrolytes and the platinum counter electrodes were increased to improve the efficiencies of DSSCs Next, we studied the glancing angle deposition (GALD) for fabrication of nanostructured thin films. The GLAD technique makes use of oblique-angle deposition from the evaporation source to the substrate. Tunable optical and electrical properties and morphologies could be obtained by different fabrication conditions and their applications on optoelectronic are promising. First, we fabricated the platinum counter electrodes by GLAD for DSSCs. The highly porous platinum counter electrodes prepared by large deposition angles can effectively enhance active surface areas to improve the DSSC efficiency. Then, the indium tin oxide thin (ITO) film was fabricated by GLAD. The optical and electrical properties of the GLAD ITO were varied with different deposition angles, such as the refractive index, transmission and sheet resistance. We also investigated the optical and electrical properties of GLAD ITO with different annealing conditions, including anneal temperature and annealing time. Results of this study shall provide the guideline for future applications of GLAD ITO to optoelectronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:58:54Z (GMT). No. of bitstreams: 1 ntu-101-D95941012-1.pdf: 4582958 bytes, checksum: d00d794b4fa1159d2570263688d33764 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Nano-Structured Thin Films 1 1.2 Overview of Glancing Angle Deposition 2 1.3 Overview of Dye-Sensitized Solar Cells 3 1.3.1 History of Dye-Sensitized Solar Cells 3 1.3.2 Principles of Dye-Sensitized Solar Cells 4 1.3.3 Characterization of Dye-Sensitized Solar Cells 4 1.4 Motivation and Dissertation Organization 7 1.4.1 Motivation 7 1.4.2 Dissertation Organization 7 Chapter 2 Dye-Sensitized Solar Cells with Nano-textured Platinum Counter Electrode 13 2.1. Introduction 13 2.2. Experiments 14 2.2.1 Preparation and Characterization of Textured Platinum Counter Electrodes 14 2.2.2 DSSC Fabrication 15 2.2.3 DSSC Characterization 16 2.3. Results and Discussions 17 2.3.1 Properties of Textured Platinum Counter Electrodes 17 2.3.2 Device Characteristics of DSSCs Using Textured Platinum Counter Electrodes 19 2.3.3 Electrochemical Impedance Spectroscopy of Devices 21 2.4 Summary 23 Chapter 3 Nanoporous platinum counter electrodes by glancing angle deposition 28 3.1 Introduction 28 3.2 Experiments 29 3.2.1 Glancing-Angle Deposition (GLAD) of platinum Counter Electrodes 29 3.2.2 Characterization of GLAD Platinum Counter Electrodes 31 3.2.3 DSSC Fabrication 31 3.2.4 DSSC Characterization 33 3.3. Results and Discussions 34 3.3.1 Properties of GLAD Pt Counter Electrodes 34 3.3.2 Characteristics of DSSCs Using Nanoporous GLAD Pt Counter Electrodes 36 3.3.3 Electrochemical Impedance Spectroscopy of Devices 39 3.4. Summary 40 Chapter 4 Fabrication and Characteristics of ITO Films by Glancing Angle Deposition 48 4.1 Introduction 48 4.1.1 Glancing Angle Deposition System 48 4.1.2 Shadow Effect of Nanoporos Thin Films 49 4.1.3 Effective Medium Approximates (EMA) 49 4.1.4 Transparency Conductive Oxide (TCO) 50 4.2 Experiments 51 4.3 Results and Discussions 52 4.3.1 Morphological Characteristics of GLAD ITO Films 52 4.3.2 Optical and Electrical characteristics of GLAD ITO Films 52 4.4 Summary 55 Chapter 5 Summary and Future Directions 76 5.1 Summary 76 5.2 Future Directions 78 References 80 | |
| dc.language.iso | en | |
| dc.subject | 氧化銦鍚 | zh_TW |
| dc.subject | 奈米結構薄膜 | zh_TW |
| dc.subject | 紋理結構 | zh_TW |
| dc.subject | 白金對電極 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | 斜角蒸鍍法 | zh_TW |
| dc.subject | nano-structured thin film | en |
| dc.subject | indium tin oxide | en |
| dc.subject | glancing angle deposition | en |
| dc.subject | dye-sensitized solar cells | en |
| dc.subject | platinum counter electrode | en |
| dc.subject | texture structure | en |
| dc.title | 奈米結構薄膜之製備與光電元件應用 | zh_TW |
| dc.title | Fabrication of Nanostructured Thin Films and Their Applications in Optoelectronic Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 汪根欉,吳志毅,陳俐吟,蔡志宏 | |
| dc.subject.keyword | 奈米結構薄膜,紋理結構,白金對電極,染料敏化太陽能電池,斜角蒸鍍法,氧化銦鍚, | zh_TW |
| dc.subject.keyword | nano-structured thin film,texture structure,platinum counter electrode,dye-sensitized solar cells,glancing angle deposition,indium tin oxide, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
