Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽明
dc.contributor.authorChe-Hua Yehen
dc.contributor.author葉哲華zh_TW
dc.date.accessioned2021-06-07T17:58:29Z-
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-10
dc.identifier.citation[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley
view of cloud computing. Technical Report UCB/EECS-2009-28, EECS Department,
University of California, Berkeley, Feb 2009.
[2] S. Bhattacharya, R. Sukthankar, and M. Shah. A framework for photo-quality assessment
and enhancement based on visual aesthetics. In Proceedings of the international
conference on Multimedia, MM ’10, pages 271–280, New York, NY, USA,
2010. ACM.
[3] G. D. Birkhoff. Aesthetic Measure. Harvard University Press, Cambridge, Massachusetts,
USA, 1933.
[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning
theory, COLT ’92, pages 144–152, New York, NY, USA, 1992. ACM.
[5] M. Boutell and J. Luo. Bayesian fusion of camera metadata cues in semantic scene
classification. Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 2:623–630, 2004.
[6] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell., 8(6):679–698, June 1986.
[7] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise
approach to listwise approach. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 129–136, New York, NY, USA, 2007. ACM.
[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
[9] R. Chellappa. Two-dimensional discrete Gaussian Markov random field models for
image processing. Journal of the Institution of Electronics and Telecommunication
Engineers, 35(2):114–120, 1989.
[10] T. Chen and H. Chen. Approximation capability to functions of several variables,
nonlinear functionals, and operators by radial basis function neural networks. Neural
Networks, IEEE Transactions on, 6(4):904 –910, jul 1995.
[11] B. Cheng, B. Ni, S. Yan, and Q. Tian. Learning to photograph. In Proceedings of
the international conference on Multimedia, MM ’10, pages 291–300, New York,
NY, USA, 2010. ACM.
[12] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color harmonization.
ACM Trans. Graph., 25(3):624–630, 2006.
[13] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995. 10.1007/BF00994018.
[14] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision,
ECCV, pages 1–22, 2004.
[15] R. Datta, D. Joshi, J. Li, and J. Z.Wang. Studying aesthetics in photographic images
using a computational approach. In In Proc. ECCV, pages 7–13, 2006.
[16] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier
under zero-one loss. Mach. Learn., 29(2-3):103–130, Nov. 1997.
[17] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Commun. ACM, 15(1):11–15, 1972.
[18] J. Fang, A. Varbanescu, and H. Sips. A comprehensive performance comparison of
cuda and opencl. In Parallel Processing (ICPP), 2011 International Conference on,
pages 216 –225, sept. 2011.
[19] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision, 59(2):167–181, 2004.
[20] Y. Freund. Boosting a weak learning algorithm by majority. Inf. Comput.,
121(2):256–285, Sept. 1995.
[21] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the Second European Conference
on Computational Learning Theory, pages 23–37, London, UK, 1995. Springer-
Verlag.
[22] G. Greenfield. On the origins of the term ”computational aesthetics”. In Computational
Aesthetics, pages 9–12, 2005.
[23] T. Grill and M. Scanlon. Photographic composition. Amphoto Books, 1990.
[24] U. Hansmann, L. Merk, M. S. Nicklous, and T. Stober. Pervasive Computing : The
Mobile World. Springer, Aug. 2003.
[25] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In Advances in Neural
Information Processing Systems 19, pages 545–552. MIT Press, 2007.
[26] F. Hoenig. Defining computational aesthetics. In Computational Aesthetics, pages
13–18, 2005.
[27] C.-J. Hu. A real-time skin-color-enhanced face detection algorithm. Master’s thesis,
National Taiwan University, 2007.
[28] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM.
[29] M. Jones and P. Viola. Fast multi-view face detection. Technical report, MITSUBISHI
ELECTRIC RESEARCH LABORATORIES, 2003.
[30] N. Karayiannis and M. Randolph-Gips. On the construction and training of reformulated
radial basis function neural networks. Neural Networks, IEEE Transactions
on, 14(4):835 – 846, july 2003.
[31] Y. Ke, X. Tang, and F. Jing. The design of high-level features for photo quality
assessment. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 419 – 426, june 2006.
[32] M. Kearns. Thoughts on hypothesis boosting. Unpublished manuscript, 1988.
[33] B. Krages. Photography: the art of composition. Allworth Press, 2005.
[34] W. Kruskal. Ordinal measures of association. Journal of the American Statistical
Association, pages 814–861, 1958.
[35] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object
detection. In Image Processing. 2002. Proceedings. 2002 International Conference
on, volume 1, pages I–900 – I–903 vol.1, 2002.
[36] L. Liu, R. Chen, L. Wolf, and D. Cohen-Or. Optimizing photo composition. Computer
Graphic Forum (Proceedings of Eurographics), 29(2), 2010.
[37] Y. Luo and X. Tang. Photo and video quality evaluation: Focusing on the subject.
In ECCV ’08: Proceedings of the 10th European Conference on Computer Vision,
pages 386–399, Berlin, Heidelberg, 2008. Springer-Verlag.
[38] B. Manjunath andW. Ma. Texture features for browsing and retrieval of image data.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 18(8):837 –842,
aug 1996.
[39] L. Marchesotti, F. Perronnin, D. Larlus, and G. Csurka. Assessing the aesthetic
quality of photographs using generic image descriptors. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 1784 –1791, nov. 2011.
[40] B. Martinez and J. Block. Visual forces: an introduction to design. Prentice Hall,
1988.
[41] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boosting algorithms as gradient
descent. In NIPS’99, pages 512–518, 1999.
[42] M. Nishiyama, T. Okabe, Y. Sato, and I. Sato. Sensation-based photo cropping. In
MM ’09: Proceedings of the seventeen ACM international conference on Multimedia,
pages 669–672, New York, NY, USA, 2009. ACM.
[43] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation
of the spatial envelope. Int. J. Comput. Vision, 42:145–175, May 2001.
[44] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization.
In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1 –8, june 2007.
[45] G. Peters. Aesthetic primitives of images for visualization. In Information Visualization,
2007. IV ’07. 11th International Conference, pages 316 –325, july 2007.
[46] V. Rivotti, J. Proenaa, J. Jorge, and M. Sousa. Composition principles for quality
depiction and aesthetics. In The International Symposium on Computational Aesthetics
in Graphics, Visualization, and Imaging, pages 37–44, 2007.
[47] Y. Ro, M. Kim, H. Kang, B. Manjunath, and J. Kim. MPEG-7 homogeneous texture
descriptor. ETRI journal, 23(2):41–51, 2001.
[48] J. San Pedro and S. Siersdorfer. Ranking and classifying attractiveness of photos in
folksonomies. In WWW ’09: Proceedings of the 18th international conference on
World wide web, pages 771–780, New York, NY, USA, 2009. ACM.
[49] A. Santella, M. Agrawala, D. DeCarlo, D. Salesin, and M. Cohen. Gaze-based
interaction for semi-automatic photo cropping. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 771–780, New
York, NY, USA, 2006. ACM.
[50] R. E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):197–227, July
1990.
[51] G. Sharma, W. Wu, and E. Dalal. The CIEDE2000 color-difference formula: implementation
notes, supplementary test data, and mathematical observations. Color
research and application, 30(1):21–30, 2005.
[52] H. Sheikh, A. Bovik, and G. de Veciana. An information fidelity criterion for image
quality assessment using natural scene statistics. Image Processing, IEEE Transactions
on, 14(12):2117 –2128, dec. 2005.
[53] Y. sheng Fu, C. yu Wan, and L. shan Lee. Latent semantic retrieval of personal
photos with sparse user annotation by fused image/speech/text features. In Proceedings
of the 2009 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP ’09, pages 1969–1972, Washington, DC, USA, 2009. IEEE
Computer Society.
[54] C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. Early versus late fusion
in semantic video analysis. In MULTIMEDIA ’05: Proceedings of the 13th annual
ACM international conference on Multimedia, pages 399–402, New York, NY, USA,
2005. ACM.
[55] H. Su, T. Chen, C. Kao, W. Hsu, and S. Chien. Preference-aware view recommendation
system for scenic photos based on bag of aesthetics-preserving features.
Multimedia, IEEE Transactions on, PP(99):1, 2012.
[56] X. Sun, H. Yao, R. Ji, and S. Liu. Photo assessment based on computational visual
attention model. In MM ’09: Proceedings of the seventeen ACM international
conference on Multimedia, pages 541–544, New York, NY, USA, 2009. ACM.
[57] H. Tong, M. Li, H. Zhang, J. He, and C. Zhang. Classification of digital photos
taken by photographers or home users. Lecture Notes in Computer Science, pages
198–205, 2004.
[58] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I–511 – I–518
vol.1, 2001.
[59] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assessment: from
error visibility to structural similarity. Image Processing, IEEE Transactions on,
13(4):600 –612, april 2004.
[60] Z. Wang, H. Sheikh, and A. Bovik. No-reference perceptual quality assessment of
jpeg compressed images. In Image Processing. 2002. Proceedings. 2002 International
Conference on, volume 1, pages I–477 – I–480 vol.1, 2002.
[61] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to
rank: theory and algorithm. In Proceedings of the 25th international conference on
Machine learning, ICML ’08, pages 1192–1199, New York, NY, USA, 2008. ACM.
[62] Y. Y. Xiang and M. S. Kankanhalli. Automated aesthetic enhancement of videos.
In Proceedings of the international conference on Multimedia, MM ’10, pages 281–
290, New York, NY, USA, 2010. ACM.
[63] Y.-H. Yang and H. Chen. Ranking-based emotion recognition for music organization
and retrieval. Audio, Speech, and Language Processing, IEEE Transactions on,
19(4):762 –774, may 2011.
[64] C.-H. Yeh, P.-R. Shih, K.-T. Liu, H.-M. Chang, and M. Ouhyoung. Face recognition
and clustering for home photos. In SIGGRAPH Asia 2011 Sketches, SA ’11, pages
39:1–39:2, New York, NY, USA, 2011. ACM.
[65] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class adaboost. Statistics and Its
Interface, 2(3):349–360, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16025-
dc.description.abstract在這個論文中,我們提出了一套個人化的照片評量系統。系統主要是跟據視覺上的美感自動對照片做評分和排序,除此之外,我們希望使用者可以自己定義何謂是美的照片。在使用上,我們希望是針對一般人所拍攝的照片作評量,而不是針對專業的攝影照片。
我們的系統會從照片中取出三種類別的特徵:構圖、顏色和光影、以及和個人喜好相關的特徵。之後利用RBF-ListNet演算法訓練出一個照片分數的預測模型,利用這個模型,我們可以預測照片的美感分數,進一步對照片做排序。為了讓使用者定義個人專屬的美感評量方式,我們提供三種使用者介面:Feature-based、Example-based、以及List-based方法。
在系統效果方面,我們的系統可以達到0.434的Kendall’s Tau值(排序關聯係數),二元分類的準確率可以達到93%。我們也針對三種使用者介面做了使用者研究,結果顯示我們提出的三種介面都可以達到不錯的使用者經驗,尤其以example-based的效果最好。
zh_TW
dc.description.abstractIn this dissertation, we propose a novel personalized ranking system for amateur photographs. Our goal of automatically ranking photographs is not intended for award-wining professional photographs but for photographs taken
by amateurs, especially when individual preference is taken into account. Photographs are described using 20 image features which can be categorized into three types: photo composition, color and intensity distribution, and features for personal preferences. We adopt RBF-ListNet as the ranking algorithm. RBF-ListNet is based on an efficient algorithm, ListNet, using radial basis functions. The performance of our system is evaluated in terms of Kendall’s tau rank correlation coefficient, precision-recall diagram,
and binary classification accuracy. The Kendall’s tau value (0.434) is higher than those obtained by ListNet and support vector regression (SVR). The precision-recall diagram and binary classification accuracy (93%) is close to the best results to date for both overall system and individual features. To realize personalization in ranking, we propose three approaches: feature-based, example-based, and list-based approach. User studies indicate that all three approaches are effective in both aesthetic and personalized ranking. In particular, the example-based approach obtained the highest user experience rating among all three.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:58:29Z (GMT). No. of bitstreams: 1
ntu-101-D96944005-1.pdf: 12076185 bytes, checksum: c5b149f2787b4a341a3ddbfdf44a3b2e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝i
中文摘要iii
Abstract v
1 Introduction 1
1.1 Computational Aesthetic . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Photograph Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Personalization in Multimedia . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Related Work 7
2.1 Computational Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Aesthetic Assessment in Photographs . . . . . . . . . . . . . . . 7
2.1.2 View Recommendation . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Aesthetic Enhancement . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 System Overview 15
4 Rules of Aesthetics 19
4.1 Photographic Composition . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Rule of Thirds . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 Line Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Color and Intensity Distribution . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.2 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Color Harmony . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Intensity Balance . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.5 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Personalized features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Color preference . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Black-and-white ratio . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Portrait with face detection . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 Aspect Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Aesthetic Learning and Personalization 39
5.1 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 ListNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Personalization based on ListNet . . . . . . . . . . . . . . . . . . 40
5.3 RBF-ListNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Personalization based on RBF-ListNet . . . . . . . . . . . . . . . 45
6 Experiments and User Study 49
6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Ranking Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Ranking Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Binary Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . 58
6.5 Examples of Personalized Results . . . . . . . . . . . . . . . . . . . . . 60
6.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7 Conclusions 69
7.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Bibliography 71
dc.language.isoen
dc.subject個人化照片排序zh_TW
dc.subject照片排序zh_TW
dc.subject使用者介面zh_TW
dc.subject照片美學zh_TW
dc.subjectphoto rankingen
dc.subjectaesthetic analysisen
dc.subjectphoto selectionen
dc.subjectpersonalizationen
dc.subjectphoto assessmenten
dc.title基於使用者回饋之個人化照片排序系統zh_TW
dc.titlePersonalized Photograph Ranking and Selection System Considering Positive and Negative User Feedbacksen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖弘源,傅楸善,陳煥宗,徐宏民,林奕成
dc.subject.keyword照片排序,照片美學,個人化照片排序,使用者介面,zh_TW
dc.subject.keywordphoto ranking,photo assessment,personalization,photo selection,aesthetic analysis,en
dc.relation.page86
dc.rights.note未授權
dc.date.accepted2012-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved