請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊 | |
| dc.contributor.author | Kai-Yan Lou | en |
| dc.contributor.author | 羅凱晏 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:56:33Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-14 | |
| dc.identifier.citation | Alberti, K.G.M.M., Zimmet, P., and Shaw, J. (2005). The metabolic syndrome—a new worldwide definition. The Lancet 366, 1059-1062.
Anstee, Q.M., and Goldin, R.D. (2006). Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87, 1-16. Atzori, L., Poli, G., and Perra, A. (2009). Hepatic stellate cell: A star cell in the liver. The International Journal of Biochemistry ; Cell Biology 41, 1639-1642. Baffy, G. (2009). Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol 51, 212-223. Bataller, R., and Brenner, D.A. (2005). Liver fibrosis. J Clin Invest 115, 209-218. Bate, C., Rumbold, L., and Williams, A. (2007). Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage. Journal of Neuroinflammation 4:5. Beaussier, M., Wendum, D., Schiffer, E., Dumont, S., Rey, C., Lienhart, A., and Housset, C. (2007). Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab Invest 87, 292-303. Bhatnagar, D., Soran, H., and Durrington, P.N. (2008). Hypercholesterolaemia and its management. Bmj 337, a993. Bloch, K. (1965). The biological synthesis of cholesterol. Science 150, 19-28. Blumenthal, R.S. (2000). Statins: Effective antiatherosclerotic therapy. American Heart Journal 139, 577-583. Breitkopf, K., Haas, S., Wiercinska, E., Singer, M.V., and Dooley, S. (2005). Anti-TGF-beta strategies for the treatment of chronic liver disease. Alcohol Clin Exp Res 29, 121S-131S. Briand, F., Naik, S.U., Fuki, I., Millar, J.S., Macphee, C., Walker, M., Billheimer, J., Rothblat, G., and Rader, D.J. (2009). Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clin Transl Sci 2, 127-133. Brown, J.M., and Yu, L. (2009). Opposing gatekeepers of apical sterol transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem 9, 18-29. Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147-152. Calkin, A.C., and Tontonoz, P. (2010). Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol 30, 1513-1518. Carpino, G., Morini, S., Ginanni Corradini, S., Franchitto, A., Merli, M., Siciliano, M., Gentili, F., Onetti Muda, A., Berloco, P., Rossi, M., et al. (2005). Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 37, 349-356. Cassiman, D., Libbrecht, L., Desmet, V., Denef, C., and Roskams, T. (2002). Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. Journal of Hepatology 36, 200-209. Chang, T.Y., and Chang, C. (2008). Ezetimibe blocks internalization of the NPC1L1/cholesterol complex. Cell Metab 7, 469-471. Chen, Q., Gruber, H., Pakenham, C., Ratnayake, W.M., and Scoggan, K.A. (2009). Dietary phytosterols and phytostanols alter the expression of sterol-regulatory genes in SHRSP and WKY inbred rats. Ann Nutr Metab 55, 341-350. Chitturi, S., Wong, V.W., and Farrell, G. (2011). Nonalcoholic fatty liver in Asia: Firmly entrenched and rapidly gaining ground. J Gastroenterol Hepatol 26, 163-172. Clader, J.W. (2004). The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47, 1-9. Consolo, M., Amoroso, A., Spandidos, D.A., and Mazzarino, M.C. (2009). Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). Int J Mol Med 24, 143-152. Cuchel, M., and Rader, D.J. (2006). Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113, 2548-2555. Daugherty, A., Zweifel, B.S., Sobel, B.E., and Schonfeld, G. (1988). Isolation of low density lipoprotein from atherosclerotic vascular tissue of Watanabe heritable hyperlipidemic rabbits. Arteriosclerosis 8, 768-777. Davis, H.R., Jr., Lowe, R.S., and Neff, D.R. (2011). Effects of ezetimibe on atherosclerosis in preclinical models. Atherosclerosis 215, 266-278. Davis, H.R., Jr., Zhu, L.J., Hoos, L.M., Tetzloff, G., Maguire, M., Liu, J., Yao, X., Iyer, S.P., Lam, M.H., Lund, E.G., et al. (2004). Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279, 33586-33592. Day, C.P., and James, O.F. (1998). Steatohepatitis: a tale of two 'hits'? Gastroenterology 114, 842-845. Dirks, A.J., and Jones, K.M. (2006). Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol 291, 1208-1212. Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., and Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 1343-1351. Durrington, P.N. (2003). Dyslipidaemia. The Lancet 362, 717-731. Duval, C., Touche, V., Tailleux, A., Fruchart, J.C., Fievet, C., Clavey, V., Staels, B., and Lestavel, S. (2006). Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun 340, 1259-1263. Esterbauer, H., Schaur, R.J., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11, 81-128. Farrell, G.C. (2007). Animal Models of Steatohepatitis. In Fatty Liver Disease, pp. 91-108. Fievet, C., and Staels, B. (2009). Liver X receptor modulators: effects on lipid metabolism and potential use in the treatment of atherosclerosis. Biochem Pharmacol 77, 1316-1327. Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509. Friedman, S.L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275, 2247-2250. Fungwe, T.V., Cagen, L., Wilcox, H.G., and Heimberg, M. (1992). Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res 33, 179-191. Garcia-Calvo, M., Lisnock, J., Bull, H.G., Hawes, B.E., Burnett, D.A., Braun, M.P., Crona, J.H., Davis, H.R., Jr., Dean, D.C., Detmers, P.A., et al. (2005). The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 102, 8132-8137. Ge, L., Wang, J., Qi, W., Miao, H.H., Cao, J., Qu, Y.X., Li, B.L., and Song, B.L. (2008). The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab 7, 508-519. Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis: The Road Ahead. Cell 104, 503-516. Goldstein, J.L., and Brown, M.S. (1977). The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46, 897-930. Goldstein, J.L., Brown, M.S., Anderson, R.G., Russell, D.W., and Schneider, W.J. (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1, 1-39. Goto, S., Ohsawa, I., Watanabe, T., Sakai, K., Shibata, K., Kato, T., Oshida, Y., and Sato, Y. (2005). Influence of use of the direct LDL-cholesterol (LDL-C) assay on diagnosis and treatment for patients with hyperlipidemia--analysis using the hospital information system. Rinsho Byori 53, 509-513. Gressner, O.A., Weiskirchen, R., and Gressner, A.M. (2007). Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol 30, 6:7. Grundy, S.M. (2004). Definition of Metabolic Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on Scientific Issues Related to Definition. Circulation 109, 433-438. Hasegawa, T., Yoneda, M., Nakamura, K., Makino, I., and Terano, A. (2001). Plasma transforming growth factor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: a pilot study. Aliment Pharmacol Ther 15, 1667-1672. Hensley, K., Kotake, Y., Sang, H., Pye, Q.N., Wallis, G.L., Kolker, L.M., Tabatabaie, T., Stewart, C.A., Konishi, Y., Nakae, D., et al. (2000). Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria. Carcinogenesis 21, 983-989. Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., and Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12, 2730-2741. Hovland, A., Lappegard, K.T., and Mollnes, T.E. (2012). LDL apheresis and inflammation - implications for atherosclerosis. Scand J Immunol. Huang, T., Chen, C., Wefler, V., and Raftery, A. (1961). A stable reagent for the Liebermann-Burchard. Application to rapid serum cholesterol determination. Anal Chem 33, 1405-1407. Istvan, E.S. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160-1164. Jia, L., Betters, J.L., and Yu, L. (2011). Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 73, 239-259. Jonas, A., and Phillips, M.C. (2008). Chapter 17 - Lipoprotein structure. In Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition), pp. 485-506. Kashani, A., Sallam, T., Bheemreddy, S., Mann, D.L., Wang, Y., and Foody, J.M. (2008). Review of side-effect profile of combination ezetimibe and statin therapy in Randomized Clinical Trials. The American Journal of Cardiology 101, 1606-1613. Kisseleva, T., and Brenner, D.A. (2006). Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 21, S84-87. Knobler, H., Schattner, A., Zhornicki, T., Malnick, S.D., Keter, D., Sokolovskaya, N., Lurie, Y., and Bass, D.D. (1999). Fatty liver--an additional and treatable feature of the insulin resistance syndrome. QJM 92, 73-79. Kreuzer, J., White, A.L., Knott, T.J., Jien, M.L., Mehrabian, M., Scott, J., Young, S.G., and Haberland, M.E. (1997). Amino terminus of apolipoprotein B suffices to produce recognition of malondialdehyde-modified low density lipoprotein by the scavenger receptor of human monocyte-macrophages. J Lipid Res 38, 324-342. Kugelmas, M., Hill, D.B., Vivian, B., Marsano, L., and McClain, C.J. (2003). Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 38, 413-419. Lakka, H.M., Laaksonen, D.E., Lakka, T.A., Niskanen, L.K., Kumpusalo, E., Tuomilehto, J., and Salonen, J.T. (2002). The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 2709-2716. Larter, C.Z., and Farrell, G.C. (2006). Insulin resistance, adiponectin, cytokines in NASH: Which is the best target to treat? Journal of Hepatology 44, 253-261. Laufs, U., Gertz, K., Dirnagl, U., Bohm, M., Nickenig, G., and Endres, M. (2002). Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Research 942, 23-30. Lee, K.S., Buck, M., Houglum, K., and Chojkier, M. (1995). Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96, 2461-2468. Li, A.C., and Glass, C.K. (2002). The macrophage foam cell as a target for therapeutic intervention. Nat Med 8, 1235-1242. Lipka, L.J. (2003). Ezetimibe: a first-in-class, novel cholesterol absorption inhibitor. Cardiovasc Drug Rev 21, 293-312. Lopez-Navarrete, G., Ramos-Martinez, E., Suarez-Alvarez, K., Aguirre-Garcia, J., Ledezma-Soto, Y., Leon-Cabrera, S., Gudino-Zayas, M., Guzman, C., Gutierrez-Reyes, G., Hernandez-Ruiz, J., et al. (2011). Th2-associated alternative Kupffer cell activation promotes liver fibrosis without inducing local inflammation. Int J Biol Sci 7, 1273-1286. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275. Lutchman, G., Promrat, K., Kleiner, D.E., Heller, T., Ghany, M.G., Yanovski, J.A., Liang, T.J., and Hoofnagle, J.H. (2006). Changes in serum adipokine levels during pioglitazone treatment for nonalcoholic steatohepatitis: relationship to histological improvement. Clin Gastroenterol Hepatol 4, 1048-1052. Ma, S., Yang, D., Wang, K., Tang, B., Li, D., and Yang, Y. (2012). Cryptotanshinone attenuates isoprenaline-induced cardiac fibrosis in mice associated with upregulation and activation of matrix metalloproteinase-2. Mol Med Report 6, 145-150. Mari, M., Caballero, F., Colell, A., Morales, A., Caballeria, J., Fernandez, A., Enrich, C., Fernandez-Checa, J.C., and Garcia-Ruiz, C. (2006). Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4, 185-198. Mehal, W., and Imaeda, A. (2010). Cell death and fibrogenesis. Semin Liver Dis 30, 226-231. Menke, J.G., Macnaul, K.L., Hayes, N.S., Baffic, J., Chao, Y.S., Elbrecht, A., Kelly, L.J., Lam, M.H., Schmidt, A., Sahoo, S., et al. (2002). A novel liver X receptor agonist establishes species differences in the regulation of cholesterol 7alpha-hydroxylase (CYP7a). Endocrinology 143, 2548-2558. Min, H.K., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., Kellum, J., Warnick, R., Contos, M.J., and Sanyal, A.J. (2012). Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 15, 665-674. Mutungi, G., Torres-Gonzalez, M., McGrane, M.M., Volek, J.S., and Fernandez, M. (2007a). Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men. Lipids in Health and Disease 6. Mutungi, G., Torres-Gonzalez, M., McGrane, M.M., Volek, J.S., and Fernandez, M.L. (2007b). Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men. Lipids Health Dis 6, 34. Naik, S.U., Wang, X., Da Silva, J.S., Jaye, M., Macphee, C.H., Reilly, M.P., Billheimer, J.T., Rothblat, G.H., and Rader, D.J. (2006). Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113, 90-97. Neuschwander-Tetri, B.A., Brunt, E.M., Wehmeier, K.R., Oliver, D., and Bacon, B.R. (2003). Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology 38, 1008-1017. Oka, K., Kobayashi, K., Sullivan, M., Martinez, J., Teng, B.B., Ishimura-Oka, K., and Chan, L. (1997). Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice. J Biol Chem 272, 1456-1460. Patel, M.D., and Thompson, P.D. (2006). Phytosterols and vascular disease. Atherosclerosis 186, 12-19. Pessin, J.E., and Saltiel, A.R. (2000). Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106, 165-169. Pickin, D.M., McCabe, C.J., Ramsay, L.E., Payne, N., Haq, I.U., Yeo, W.W., and Jackson, P.R. (1999). Cost effectiveness of HMG-CoA reductase inhibitor (statin) treatment related to the risk of coronary heart disease and cost of drug treatment. Heart 82, 325-332. Postic, C., and Girard, J. (2008). The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 34, 643-648. Prufer, K., and Boudreaux, J. (2007). Nuclear localization of liver X receptor alpha and beta is differentially regulated. J Cell Biochem 100, 69-85. Repa, J.J., Berge, K.E., Pomajzl, C., Richardson, J.A., Hobbs, H., and Mangelsdorf, D.J. (2002). Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277, 18793-18800. Repa, J.J., Buhman, K.K., Farese, R.V., Jr., Dietschy, J.M., and Turley, S.D. (2004). ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology 40, 1088-1097. Savard, C., Tartaglione, E.V., Kuver, R., Geoffrey Haigh, W., Farrell, G.C., Subramanian, S., Chait, A., Yeh, M.M., Quinn, L.S., and Ioannou, G.N. (2012). Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology. Schaafsma, D., McNeill, K.D., Mutawe, M.M., Ghavami, S., Unruh, H., Jacques, E., Laviolette, M., Chakir, J., and Halayko, A.J. (2011). Simvastatin inhibits TGFbeta1-induced fibronectin in human airway fibroblasts. Respir Res 12, 113. Schultz, J.R., Tu, H., Luk, A., Repa, J.J., Medina, J.C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D.J., et al. (2000). Role of LXRs in control of lipogenesis. Genes Dev 14, 2831-2838. Shulman, G.I. (2000). Cellular mechanisms of insulin resistance. J Clin Invest 106, 171-176. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G. (1986). A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103, 2787-2796. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, D. (1984). Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 81, 3883-3887. Suchy, D., Labuzek, K., Stadnicki, A., and Okopien, B. (2011). Ezetimibe--a new approach in hypercholesterolemia management. Pharmacol Rep 63, 1335-1348. Sundaresan, S., Vijayagopal, P., Mills, N., Imrhan, V., and Prasad, C. (2011). A mouse model for nonalcoholic steatohepatitis. J Nutr Biochem 22, 979-984. Tall, A.R., Costet, P., and Wang, N. (2002). Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 110, 899-904. Tomita, K., Tamiya, G., Ando, S., Ohsumi, K., Chiyo, T., Mizutani, A., Kitamura, N., Toda, K., Kaneko, T., Horie, Y., et al. (2006). Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55, 415-424. Trauner, M., Arrese, M., and Wagner, M. (2010). Fatty liver and lipotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1801, 299-310. van der Veen, J.N., Kruit, J.K., Havinga, R., Baller, J.F., Chimini, G., Lestavel, S., Staels, B., Groot, P.H., Groen, A.K., and Kuipers, F. (2005). Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46, 526-534. van Heek, M., Austin, T.M., Farley, C., Cook, J.A., Tetzloff, G.G., and Davis, H.R. (2001a). Ezetimibe, a potent cholesterol absorption inhibitor, normalizes combined dyslipidemia in obese hyperinsulinemic hamsters. Diabetes 50, 1330-1335. van Heek, M., Compton, D.S., and Davis, H.R. (2001b). The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol 415, 79-84. Vareka, T., Vitkova, D., Zeman, M., Vecka, M., and Zak, A. (2012). Statin-ezetimibe combination in hyperlipidemia treatment. Cas Lek Cesk 151, 17-21. Vergnes, L., Phan, J., Strauss, M., Tafuri, S., and Reue, K. (2003). Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J Biol Chem 278, 42774-42784. Vlahcevic, Z.R., Pandak, W.M., and Stravitz, R.T. (1999). Regulation of bile acid biosynthesis. Gastroenterol Clin North Am 28, 1-25. Wanless, I.R., and Lentz, J.S. (1990). Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12, 1106-1110. Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R.E., and Tataranni, P.A. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86, 1930-1935. Wouters, K., van Gorp, P.J., Bieghs, V., Gijbels, M.J., Duimel, H., Lutjohann, D., Kerksiek, A., van Kruchten, R., Maeda, N., Staels, B., et al. (2008). Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474-486. Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X.X., Pandey, S.K., Bhanot, S., Monia, B.P., Li, Y.X., and Diehl, A.M. (2007). Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366-1374. Zhao, C., and Dahlman-Wright, K. (2010). Liver X receptor in cholesterol metabolism. J Endocrinol 204, 233-240. 郝立智與柴國樑 (2004) 漫談脂肪肝。台灣醫學雜誌,第47卷第1期。 黄繼漢,黄曉暉,陳志揚,鄭青山,孫瑞元 (2004) 藥理試驗中動物間和動物與人體間的等效劑量換算。中國藥理學會。 侯丞 (2009) 我有脂肪肝---怎麼辦?台灣肝臟學術文教基金會刊第38期。 賴昱昇 (2009) 具有治療非酒精性脂肪肝之中草藥之篩選。國立台灣大學醫學院生化學研究所碩士論文。 楊禮禪 (2011) 中草藥複方B預防二乙基亞硝胺及高油脂高膽固醇飼料所造成的非酒精性脂肪肝炎與肝臟纖維化。國立台灣大學醫學院生化學研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15962 | - |
| dc.description.abstract | 近年來,國人由於飲食習慣的改變,常在未察覺情況下吃下過量的膽固醇,使得高膽固醇血脂症的病人 (hypercholesterolemia) 有增加的趨勢,而高血脂症是造成心血管疾病的危險因子。臨床上常用來治療這類的人的藥物大致可分兩大類,主要是抑制膽固醇合成關鍵酵素-HMG-CoA reductase的抑制劑(statins),以及抑制腸道膽固醇的吸收-Ezetimibe;前者降低血脂效果很好,但是在某些病人會有如肌炎、橫紋肌溶解症、肝功能異常等的副作用;後者是阻礙膽固醇經由小腸 Niemann-Pick C1 Like 1 (NPC1L1) 的吸收,目前市面上唯有 Ezetimibe 是抑制膽固醇吸收的藥物,因此開發能抑制膽固醇吸收的藥物是非常有發展空間的。
我們先前的研究發現,利用細胞實驗篩選出具有抑制脂肪酸合成和促進脂肪酸氧化分解的中草藥,經與中醫師討論由三個藥材組成一個中草藥配方 (複方BM)。在C57BL/6小鼠的高油脂高膽固醇動物模式中,發現複方BM可以有效降低肝臟和血漿中的膽固醇以及三酸甘油酯濃度。這個動物模式在大量膽固醇餵食下HMG-CoA reductase 基因表現已受到抑制,作用可能不是經由抑制HMG-CoA reductase。因此我們推測複方BM可能含有抑制腸道吸收膽固醇的成分,因而降低肝臟及血液中膽固醇。為了探討其可能性及找出複方BM中那種藥材有這樣的作用,因此我將三個藥材B14、B28和B50,以及複方BM以胃管餵食六週大倉鼠 (Syrian golden Hamster)。實驗分成七組,控制組餵食正常飼料 (chow diet) 以及灌食滅菌水,另外六組實驗組則都餵食含 23% 油脂 0.2% 膽固醇飼料,其中五組分別灌食B14、B28、B50、複方BM和三倍藥量複方BM (3XBM),對照組則灌食滅菌水 (HFC)。飼養六週後,結果顯示複方BM和單方B28可以顯著降低血漿的總膽固醇,以及血漿中ALT活性,而B14和B50組則沒有顯著作用。餵食複方BM和B28藥明顯降低血漿LDL-cholesterol,但B14和B50組則沒有顯著影響。另外,複方BM和單方B28都能有效降低肝臟總膽固醇量,肝臟組織切片亦顯示複方B和單方B28具有減輕脂肪油滴堆積、發炎現象及纖維化之情形。我們由這些結果看到複方BM和單方B28有顯著降低LDL- cholesterol及肝臟膽固醇的效果,所以我們接著分析這它們在肝臟和腸道運送或吸收膽固醇相關基因的表現,RT-Q-PCR 結果顯示複方BM和B28藥可以顯著降低腸道 Niemann-Pick C1 Like 1 (NPC1L1) mRNA 並提升肝臟 LDL-Receptor mRNA 的表現,表示複方BM和B28藥可能是抑制膽固醇的吸收,減少肝臟膽固醇,使肝臟LDL-Receptor表現增加,導致血漿LDL-cholesterol降低。糞便膽固醇與中性固醇分析發現灌食倉鼠複方BM和B28組的糞便中,膽固醇顯著高於HFC組,且B28組糞便中性固醇量也顯著高於HFC組。 我們的結果顯示,複方BM中的單方B28具抑制腸道NCP1L1表現的作用,透過抑制吸收能達到降血脂、預防肝臟發炎與纖維化形成的功效,後續研究可望從B28中鑑定並純化出具抑制膽固醇吸收作用的成分,並探討其作用機制。 | zh_TW |
| dc.description.abstract | In recent years, the prevalence of hypercholesterolemia in Taiwan is increased due to change of diet and lifestyle. Statins and ezetimibe are two major cholesterol-lowing drugs of hypercholesterolemia. Statins are HMG-CoA reductase inhibitors, they inhibit cholesterol synthesis and have good cholesterol-lowing effects. But statins cause side effects, including myalgias, rhabdomyolysis and liver damage in some patients. Ezetimibe, block cholesterol absorption by targeting NPC1L1, reduces cholesterol by inhibiting cholesterol absorption in small intestine. Currently, ezetimibe is the only one absorption inhibitor; therefore, developing of medicines for hypercholesterolemia by absorption inhibition has great potential.
In our previous study, we found mixture B (BM) that contained herbs able to inhibit fatty acid (FA) synthesis, and induced FA oxidation in HepG2. BM had cholesterol-lowing effect in liver and plasma in high fat/cholesterol fed C57BLL/6 mice. Since dietary cholesterol inhibits HMG-CoA reductase, we speculated that BM may reduce plasma and liver cholesterol by inhibiting cholesterol absorption. In this study, six weeks old Syrian golden Hamsters were divided into seven groups. The control group was fed with chow diet and given distilled water by gavage. The experimental groups were fed with high fat/high cholesterol diet, and HFC was gavaged with distilled water and the other five groups were gavaged with either B14, B28, B50, BM or 3XBM daily for 6 weeks. After 6 weeks of experiment, BM and B28 not only lowered plasma total cholesterol, LDL-cholesterol and liver cholesterol but also reduced plasma ALT activities significantly. However, no significant changes were found in B14 and B50 groups. Histological analyses of hepatic tissues show that BM and B28 improved liver steatosis, inflammation and fibrosis. Moreover, RT-Q-PCR analysis revealed that mixture B and B28 decreased mRNA levels of NPC1L1 in the small intestine and increased mRNA the levels of LDL-Receptor in the liver. Analysis of fecal cholesterol and neutral sterols showed that cholesterol contents were increased in the feces of BM and B28 groups, and neutral sterols were increased in the feces of B28 group. The results suggested that BM and B28 inhibited cholesterol absorption in small intestine and thus reduce liver and plasma cholesterol. Our results showed that B28 of the BM was effective in prevention of high fat/high cholesterol diet-induced hypercholesterolemia, NASH and fibrosis through the inhibition of cholesterol absorption. Further studies will focus on the identification and isolation of the functional component(s) in B28, and investigation of the underlined molecular mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:56:33Z (GMT). No. of bitstreams: 1 ntu-101-R99442018-1.pdf: 4916781 bytes, checksum: 4ed2f283b2f08d1c1d15084744924779 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 vii Abstract ix 縮寫對照表 xi 第一章、緒論 1 第一節、文獻回顧 2 第二節 研究動機與實驗目的 13 第二章、材料與方法 15 第一節、實驗材料 16 第二節、動物實驗 17 第三節、細胞實驗 31 第四節、統計分析 35 第三章、實驗結果 36 第一節、中草藥的測試 37 第二節、male Syrian golden hamsters 雄性倉鼠動物實驗 37 第三節、細胞實驗 42 第四章、討論 44 第一節、複方BM與單方B14、B28、B50的用藥量 45 第二節、複方BM與單方B28抑制膽固醇吸收的影響 45 第三節、單方-B50具有降血糖的潛力 49 第四節、複方BM與單方B28具有預防非酒精性脂肪肝與肝臟纖維化的功效 49 第五節、未來發展 50 第六節、總結 52 第五章、圖表 53 參考文獻 70 附錄: 藥品配置 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非酒精性脂肪肝 | zh_TW |
| dc.subject | 高膽固醇脂症 | zh_TW |
| dc.subject | 肝臟發炎反應 | zh_TW |
| dc.subject | 中草藥 | zh_TW |
| dc.subject | 倉鼠 | zh_TW |
| dc.subject | 低密度脂蛋白 | zh_TW |
| dc.subject | hypercholesterolemia | en |
| dc.subject | nonalcoholic fatty liver | en |
| dc.subject | LDL-Cholesterol | en |
| dc.subject | hamster | en |
| dc.subject | herb | en |
| dc.subject | hepatic inflammation | en |
| dc.title | 以倉鼠為動物模式探討中草藥複方B及單方B28之降低密度脂蛋白膽固醇之作用 | zh_TW |
| dc.title | LDL–C lowering effects of mixture B and B28 herbs in Syrian Golden Hamster | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳惠玲,黃青真,蔡維人,王沛然 | |
| dc.subject.keyword | 高膽固醇脂症,肝臟發炎反應,中草藥,倉鼠,低密度脂蛋白,非酒精性脂肪肝, | zh_TW |
| dc.subject.keyword | hypercholesterolemia,hepatic inflammation,herb,hamster,LDL-Cholesterol,nonalcoholic fatty liver, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
