請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15961
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉信宏 | |
dc.contributor.author | Tan-Tung Wang | en |
dc.contributor.author | 王丹彤 | zh_TW |
dc.date.accessioned | 2021-06-07T17:56:32Z | - |
dc.date.copyright | 2012-08-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-14 | |
dc.identifier.citation | 陸祥家。 2004。 東亞蘭嵌紋病毒表現載體的構築與分析。私立南台科技大學化學工程研究所生物技術組碩士學位論文。
楊玉婷。2010。全球蘭花發展現況與未來展望。台灣經濟研究月刊。33:36-41。 Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., et al. 1998. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. 95: 10306-10311. Abramovitch, R.B., Anderson, J.C., and Martin, G.B. 2006. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 7: 601-611. Asamizu, E., Shimoda, Y., Kouchi, H., Tabata, S., Sato, S. 2008. A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus. Plant Physiol. 147: 2030-2040. Agrios, G.N. 2005. Plant Pathology, 5th ed. Elsevier Acad. Press. USA. 922 pp. Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60: 379-406. Cao, H., Bowling, S.A., Gordon, S., and Dong, X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 6: 1583-1592. Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. 95: 6531-6536. Chen, W.H., Lin, T.Y., Chen, C.C., Wu, W.L., and Chen, H.H. 2001. Genomic study of Phalaenopsis orchid. Proceedings of APOC7. Nagoya, Japan. pp.150-153. Chen, W., and Singh, K.B. 1999. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J. 19: 667-677. Chen, Z., Ricigliano, J.W., and Klessig, D.F. 1993. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. 90: 9533-9537. Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X., and Ronald, P.C. 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 27: 101-113. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell. 124: 803-814. Coll, N.S., Epple, P., and Dangl, J.L. 2011. Programmed cell death in the plant immune system. Cell Death Differ. 18: 1247-1256. Delaney, T.P., Friedrich, L., and Ryals, J.A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. 92: 6602-6606. Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P.R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell. 12: 279-290. Devoto, A., and Turner, J.G. 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. 92: 329-337. Dixit, A.R., and Dhankher, O.P. 2011. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One. 6: e20921. Dixit, V.M., Green, S., Sarma, V., Holzman, L.B., Wolf, F.W., O’Rourke, K., Ward, P.A., Prochownik, E.V., and Marks, R.M. 1990. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265: 2973-2978. Djonovic, S., Vargas, W.A., Kolomiets, M.V., Horndeski, M., Wiest, A., and Kenerley, C.M. 2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 145: 875-889. Dodds, P.N., and Rathjen, J.P. 2010. Plant immunity: towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11: 539-548. Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51: 21-37. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316-323. Dong, X. 2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7: 547-552. Du, H., and Klessig, D.F. 1997. Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol. 113: 1319-1327. Durner, J., and Klessig, D.F. 1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6- dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. 92: 11312-11316. Durrant, W.E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209. Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. Eulgem, T., and Somssich, I.E. 2007. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10: 366-371. Evans, P.C., Ovaa, H., Hamon, M., Kilshaw, P.E., Hamm, S., Bauer, S., Ploegh, H.L., and Smith, T.S. 2004. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378: 727-734. Feys, B.J., Wiermer, M., Bhat, R.A., Moisan, L.J., Medina-Escobar, N., et al. 2005. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell. 17: 2601-2613. Fobert, P.R., and Despres, C. 2005. Redox control of systemic acquired resistance. Curr. Opin. Plant Biol. 8: 378-382. Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals, J. 2001. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant Microbe. Interact. 14: 1114-1124. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., and Nye, G. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261: 754-756. Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis — 2001 status. Curr. Opin. Plant Biol. 4: 301-308. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205-227. Glazebrook, J., Rogers, E.E., and Ausubel, F.M. 1996. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics. 143: 973-982 Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R., and Ausubel, F.M. 1997. Phytoalexinde Rcient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetic. 146: 381-392. Grant, M., and Lamb, C. 2006. Systemic immunity. Curr. Opin. Plant Biol. 9: 414-420. Hemm, M.R., Herrmann, K.M., and Chapple, C. 2001. AtMYB4: a transcription factor general in the battle against UV. Trends Plant Sci. 6: 135-136. Hew, C.S., and Yong, W.H. 2003. The physiology of tropical orchids in relation to the industry, 2nd ed. World Scientific Publishing Co. Pte. Ltd, Singapore. 370 pp. Huh, S.U., Kim, K.J., and Paek, K.H. 2012. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem. Biophys. Res. Commun. 417:910-7. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111. Jin, H., and Martin, C. 1999. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol. Biol. 41: 577-585. Jin, H.L., Axtell, M.J., Dahlbeck, D., Ekwenna, O., Zhang, S.Q., Staskawicz, B., and Baker1, B. 2002. NPK1, an MEKK1-like mitogen activated protein kinase, regulates innate immunity and development in plants. Dev. Cell. 3: 291-297. Jin, Y., Wang, M., Fu, J., Xuan, N., Zhu, Y., Lian, Y., Jia, Z., Zheng, J., and Wang, G. 2007. Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics. 90: 265-275. Jones, J.D., Dangl, J.L. 2006. The plant immune system. Nature. 2006. 444: 323-329. Karimi, M., Inze, D., and Depicker, A. 2002. GATEWAY vectors for Agrobacterium- mediated plant transformation. Trends Plant Sci. 7: 193-195. Kang, M., Fokar, M., Abdelmageed, H., and Allen, R.D. 2011. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol. Biol. 75: 451-466. Katagiri, F., Lam, E., and Chua, N.H. 1989. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature. 340: 727-730. Kim, H.S., and Delaney, T.P. 2002. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J. 32: 151-163. Knight, H., and Knight, M.R. 2001. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6: 262-267. Kumar, D., and Klessig, D.F. 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc. Natl. Acad. Sci. 100: 16101-16106. Kuttenkeuler, D., and Boutros, M. 2004. Genome-wide RNAi as a route to gene function in Drosophila. Brief. Funct. Genomic. Proteomic. 3: 168-176. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 16: 223-233. Lee, L.Y., Fang, M.J., Kuang, L.Y., and Gelvin, S.B. 2008. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods. 4:24. Lee, Y.I., Yeung, E.C., Lee, N., and Chung, M.C. 2008. Embryology of Phalaenopsis amabilis var. formosa: embryo development. Bota. Stu. 49: 139-146. Lin, T.P. 1988. Native Species of Taiwan vol. 2. Southern Materials Center, Inc., Taipei, Republic of China. 300 pp. Linnen, J.M., Bailey, C.P., and Weeks, D.L. 1993. Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene. 128: 181-188. Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S.P. 2002.Tobacco Rar1,EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30: 415-429. Loake, G., and Grant, M. 2007. Salicylic acid in plant defense: the players and protagonists. Curr. Opin. Plant Biol. 10: 466-472. Lu, H.C., Chen, H.H., Tsai, W.C., Chen, W.H., Su, H.J., Chagn, D.C., and Yeh, H.H. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143, 558-569. Lu, H.C., Hsieh, M.H., Chen, C.E., Chen, H.H., Wang, H.I., and Yeh, H.H. 2012. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol. Plant Microbe. Interact. 25: 738-746. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. Eur. Mol. Biol. Organ. J. 22: 5690-5699. Mackey, D., and McFall, A.J. 2006. MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol. Microbiol. 61: 1365-1371. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. 1990. Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 250: 1002-1004 Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., et al. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26: 403-410. Martin, S. E., and Caplen, N. J. 2007. Applications of RNA interference in mammalian systems. Annu. Rev. Genomics Hum. Genet. 8: 81-108. Metraux, J.P., Signer, H., Ryals, J., Ward, E., and Wyss-Benz, M. 1990. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science. 250: 1004-1006. Mitsuda, N., and Ohme-Takagi, M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol. 50: 1232-1248. Moffett, P. 2009. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res.75: 1-33. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell. 113: 935-944. Mukhopadhyay, A., Vij, S., and Tyagi, A.K. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. 101: 6309-6314. Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O., and Wasternack, C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140: 249-262. Ohkumo, T., Masutani, C., Eki, T., and Hanaoke, F. 2008. Use of RNAi in C. elegans. Methods. Mol. Biol. 442: 129-137. Opipari, A.W., Boguski, M.S., and Dixit, V.M. 1990. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 265: 14705-14708. Padmanabhan, M.S., and Dinesh-Kumar, S.P. 2008. Encyclopedia of Virology, 3rd Ed. Academic Press Inc., USA. 3234 pp. Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D.F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116. Parker, J.E. 2003. Plant recognition of microbial patterns. Trends Plant Sci. 8: 245-247. Parker, J.E., Holub, E.B., Frost, L.N., Falk, A., Gunn, N.D., and Daniels, M.J. 1996. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell. 8: 2033-2046. Pieterse, C.M.J., and Van Loon, L.C. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7: 456-464. Ping, C.Y., Lee, Y.I., Lin, T.S., Yang, W.J., and Lee, G.C. 2010. Crassulacean acid metabolism in Phalaenopsis aphrodite var. formosa during different developmental stages. Acta Hort. 878: 71-77. Pruss, G.J., Nester, E.W., and Vance, V. 2008. Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol. Plant Microbe. Interact. 21: 1528-1538. Rico, A., Bennett, M.H., Forcat, S., Huang, W.E., and Preston, G.M. 2010. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS One. 5: e8977. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R. et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 290: 2105-2110. Robatzek, S., and Somssich, I.E. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16: 1139-1149. Robertson, D. 2004. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55: 495-519. Rushton, P.J., and Somssich, I.E. 1998. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315. Shah, J. 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6: 365-371. Shah, J., Tsui. F., and Klessig, D.F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol. Plant Microbe. Interact. 10: 69-78 Sheehan, T., and Sheehan, M. 1995. An illustrated survey of Orchid Genera. Timber Press Inc., Portland. 421 pp. Sharma, Y.K., Hinojos, C.M., and Mehdy, M.C. 1992. cDNA cloning, structure and expression of a novel pathogenesis-related protein in bean. Mol. Plant Microbe. Interact. 5: 89-95. Singh, K., Foley, R.C., and Oñate-Sánchez, L. 2002. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436. Slaymaker, D.H., Navarre, D.A., Clark, D., del Pozo, O., Martin, G. B., and Klessig, D.F. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. 99: 11640-11645. Small, G.W., Shi, Y.Y., Higgins, L.S., and Orlowski, R.Z. 2007. Mitogenactivated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 67: 4459-4466. Smith, J.L., De Moraes, C.M., and Mescher, M.C. 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 65: 497-503. Spoel, S.H., and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12: 89-100. Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., and Van Pelt, J.A. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 15: 760-770 Stracke, R., Werber, M., and Weisshaar, B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4: 447-456. Tada, Y. et al. 2008. S‑nitrosylation and thioredoxins regulate conformational changes of NPR1 in plant innate immunity. Science. 321: 952-956. Takken, F.L.W., and Joosten, M.H.A.J. 2000. Plant resistance genes: their structure, function and evolution. Eur. J. Plant Pathol. 106: 699-713. Thordal-Christensen, H. 2003. Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6: 351-357. Tsai, W.C., Hsiao, Y.Y., Lee, S.H., Tung, C.W., Wang, D.P., Wang, H.C., Chen, W.H., and Chen, H.H. 2006. Expression analysis of the ESTs derived from the flower buds of Phalaenoopsis equestris. Plant Sci. 170: 426-432. Van Wees, S.C.M., Van der Ent, S., and Pieterse, C.M.J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11: 443-448. Vij, S., and Tyagi, A.K. 2008. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct. Integr. Genomics. 8: 301-307. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177-206. Wang, M.B., and Waterhouse, P.M. 2002. Application of gene silencing in plants. Curr. Opin. Plant Biol. 5: 146-150. Watson, J. M., Fusaro, A. F., Wang, M., and Waterhouse, P. M. 2005. RNA silencing platforms in plant. FEBS Lett. 579: 5982-5987. Wiermer, M., Feys, B.J., and Parker, J.E. 2005. Plant immunity: the EDS1 regulatory node. Curr. Opin. Plant Biol. 8: 1-7. Yoo, S.D., Cho, Y.H., and Sheen, J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572. Yoon, J.Y., Chung, B.N., Choi, G.S., and Choi, S.K. 2012. Genetic variability in the coat protein genes of Cymbidium mosaic virus isolates from orchids. Virus Genes. 44: 323-328. Yu, D., Chen, C., and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell. 13: 1527-1539. Zhang, S., and Klessig, D.F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6: 520-527. Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. 96: 6523-6528. Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E. et al. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe. Interact. 13: 191-202. Zhou, N., Tootle, T.L., Tsui, F., Klessig, D.F., and Glazebrook, J. 1998. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell. 10: 1021-1030. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15961 | - |
dc.description.abstract | 蘭花屬於Orchidaceae科,其成員超過35000種,是被子植物中最大的科之一,然而蘭花在病原菌入侵的情形下,如何引發抗性反應還有其機制仍有許多部分有待研究。實驗室先前以能夠引發病毒(Cymbidium mosaic virus)誘導性基因靜默(VIGS)之病毒載體─pCymMV-Gateway攜帶187個預測的Phlaenodopsis aphrodite var. Formosa轉錄因子,篩選會參與在病毒誘導水楊酸相關抗性反應之基因,由此發現PhaTF13會影響P. aphrodite中pathogenesis related gene 1的同源性基因PhaPR1的表現。本實驗選殖PhaTF13基因,透過Rapid Amplification of cDNA Ends (RACE)取得其完整的序列及正確的轉錄起始、終止點。再經由序列比對、演化分析發現PhaTF13蛋白帶有兩個轉錄因子常見的鋅指型功能區塊(zinc finger domain)且和其他單子葉植物之相似蛋白歸為同一群。為了更確切分析此轉錄因子在水楊酸相關抗性反應中所扮演的角色,利用短暫表現小片段短夾型RNA (hairpin RNA, hpRNA)造成基因靜默現象以降低PhaTF13之表現量,並偵測蘭花中的水楊酸相關之抗性指標基因PhaNPR1、PhaPR1,來針對PhaTF13進行功能性分析,確認PhaTF13位於PhaPR1及PhaNPR1的上游。並且發現在健康P. aphrodite植株中,PhaTF13只有在蕊柱及葉片中有些微表現,而在CymMV病毒感染的P. aphrodite植株中,PhaTF13的表現量在全株中皆明顯上升。最後構築PhaTF13 open reading frame融合綠色螢光蛋白(green fluorescence protein, GFP) 的表現載體(PhaTF13::GFP及GFP::PhaTF13),在蘭花的原生質體(protoplast)中觀察其表現的區域(subcellular localization),顯示PhaTF13蛋白主要在細胞核內表現。 | zh_TW |
dc.description.abstract | Orchidaceae consists of at least 35000 species and is among one of the largest families within angiosperm; however, how they trigger plant defense and response to pathogens remains largely unsolved. In our previous experiments using a Cymbidium mosaic virus (CymMV) induced gene silencing system to screen 187 predicted Phalaenopsis aphrodite var. Formosa transcription factors on virus induced salicylic acids (SA) related plant defense response allowed us to identify PhaTF13 involved in the expression of P. aphrodite homolog of pathogenesis related gene 1, PhaPR1. To identify the transcription start site and stop site of PhaTF13, we used Rapid Amplification of cDNA Ends (RACE) to obtain the 5’- and 3’-end sequences. Phylogenetic analysis revealed that PhaTF13 protein contains conserved A20/AN1 zinc finger domain and is grouped together with other monocotyledons homologs. To more specifically analyze the role of PhaTF13 in SA-related plant defense, we delivered two 21-nt hairpin RNA into P. aphrodite by agroinfiltration, and the data suggested that knockdown of PhaTF13 reduced the expression of PhaPR1 and PhaNPR1. The PhaTF13 only slightly expressed in column and leaf but induced to higher levels afterz CymMV infection in all P. aphrodite parts. Expression of PhaTF13::GFP or GFP::PhaTF13 in P. aphrodite protoplasts revealed that the PhaTF13 is mainly localized in nucleolus. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:56:32Z (GMT). No. of bitstreams: 1 ntu-101-R98633011-1.pdf: 1824384 bytes, checksum: 1046a451e8d0582ef653cb718a6846fd (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員審定書…………………………………………………………………………i 致謝……………………………………………………………………………………ii 中文摘要………………………………………………………………………………iii 英文摘要………………………………………………………………………………iv 目錄……………………………………………………………………………………v 表目錄…………………………………………………………………………………viii 圖目錄…………………………………………………………………………………ix 第一章 前言…………………………………………………………………………1 1.1植物抗性……………………………………………………………………1 1.1-1 基本性抗性(basal resistance) ………………………………………1 1.1-2 抗性基因調控型抗性(R gene-mediated resistance)………………2 1.1-2-1 局部性抗性…………………………………………………2 1.1-2-2 誘導性系統抗性(Induced Systemic Resistance, ISR)……3 1.1-2-3 系統性獲得抗性(Systemic Acquired Resistance, SAR)…3 1.2 轉錄因子(transcription factors)…………………………………………5 1.2-1 植物中的抗性相關轉錄因子………………………………………5 1.2-2 參與在系統性獲得抗性(SAR)中的轉錄因子……………………6 1.3 蘭花之簡介………………………………………………………………7 1.4 病毒誘導性基因靜默之簡介……………………………………………8 1.5 NPR1上游的重要性………………………………………………………9 1.6 前人研究…………………………………………………………………10 第二章 材料與方法…………………………………………………………………12 2.1 植物材料以及生長環境…………………………………………………12 2.2 化學藥劑處理……………………………………………………………12 2.3 萃取植株RNA…………………………………………………………12 2.4 去除核酸中的DNA……………………………………………………13 2.5 聚合酶鏈鎖反應(Polymerace chain reaction, PCR)……………………13 2.6 Semi-quantitative RT-PCR定量分析……………………………………14 2.7 瓊脂膠體電泳分析………………………………………………………14 2.8 瓊脂膠體核酸產物的回收………………………………………………14 2.9 黏合反應(Ligation reaction)……………………………………………15 2.10 轉型作用(Transformation)……………………………………………15 2.11 質體抽取(Purification of plasmids)……………………………………16 2.12 Rapid Amplification of cDNA Ends (RACE)……………………………16 2.12-1 5’、3’-RACE-Ready cDNA 之合成……………………………16 2.12-2 RACE PCR反應………………………………………………17 2.13 建構PhaTF13-pCymMV-Gateway載體………………………………17 2.14 建構pB7GWIWG2-PhaTF13-hpRNA表現載體………………………18 2.15 構築PhaTF13融合綠色螢光蛋白(GFP)表現載體……………………18 2.16 PhaTF13 ORF及21 nt DNA選殖進入pENTR™ TOPO®載體………18 2.17 LR重組 (LR recombination) …………………………………………19 2.18 序列比對………………………………………………………………19 2.19 親緣演化分析…………………………………………………………20 2.20 農桿菌注入法(Agroinfiltration) ………………………………………20 2.21 分離蝴蝶蘭原生質體(protoplast)及聚乙二醇(PEG)轉染……………20 2.22 共軛焦顯微鏡觀察(confocal microscopy)……………………………21 第三章 結果…………………………………………………………………………22 3.1 利用病毒誘導性基因靜默之pCymMV-Gateway載體偵測PhaTF13…22 3.2 PhaTF13轉錄起始點及終止點之確立…………………………………22 3.3 PhaTF13序列分析………………………………………………………23 3.4 PhaTF13親緣演化分析(phylogenetic analysis)…………………………23 3.5 PhaTF13位於PhaNPR1 及PhaPR1的上游……………………………24 3.6 PhaTF13在蘭花各部位基因表現量……………………………………25 3.7 PhaTF13轉錄因子在細胞中表現位置實驗(Subcellular localization)…25 第四章 討論…………………………………………………………………………27 第五章 參考文獻……………………………………………………………………31 第六章 圖表集………………………………………………………………………48 表一 論文中所使用之引子對序列…………………………………………48 圖一 利用RT-PCR分析PhaTF13被靜默時PhaPR1的表現……………50 圖二 以Rapid-amplification of cDNA ends (RACE)分析PhaTF13全長基, 相關之圖示及RACE產物之電泳……………………………………51 圖三 PhaTF13蛋白之圖示及序列排比……………………………………53 圖四 PhaTF13親緣演化分析結果…………………………………………55 圖五 PhaTF13功能性分析…………………………………………………56 圖六 PhaTF13在蘭花植株中各部位的基因表現量………………………57 圖七 PhaTF13轉錄因子在細胞中表現位置………………………………59 第七章 附錄…………………………………………………………………………61 圖一 pCymMV-Gateway載體之基因結構…………………………………61 表一 PhaTF13之open reading frame (ORF)序列…………………………62 圖二 PhaTF13基因功能性分析所使用之產生hairpin RNA載體圖譜……63 圖三 建構PhaTF13融合綠色螢光蛋白(GFP)之表現載體圖譜…………64 | |
dc.language.iso | zh-TW | |
dc.title | 一個參與在病毒誘導水楊酸相關抗性之轉錄因子PhaTF13之分子選殖與鑑定 | zh_TW |
dc.title | Molecular Cloning and Characterization of PhaTF13 that May Involve in Virus-induced Salicylic Acid-related Plant Defense Response | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張孟基,洪傳揚,陳仁治 | |
dc.subject.keyword | 轉錄因子,A20/AN1 zinc finger domain,水楊酸,NPR1,PR1, | zh_TW |
dc.subject.keyword | transcription factor,A20/AN1 zinc finger domain,salicylic acid,NPR1,PR1, | en |
dc.relation.page | 65 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。