Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁昭旼 教授
dc.contributor.authorMin-Yen Linen
dc.contributor.author林旻延zh_TW
dc.date.accessioned2021-06-07T17:55:38Z-
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation[1] Pablo Bermejo , Luis de la Ossa, Jose A. Gamez, Jose M. Puerta, “Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking”, Knowledge-Based Systems, vol. 25, pp. 35-44,2012.
[2] Duen-Yian Yeh , Ching-Hsue Cheng , Yen-Wen Chen, “A predictive model for cerebrovascular disease using data mining”, Expert Systems with Applications vol. 38 , pp. 8970-8977,2011.
[3] Ming-Syan Chen, et al, “Data mining : an overview from a database perspective”, IEEE transactions on knowledge and data engineering, vol. 8, pp. 866-883, 1996
[4] I. Guyon and A. Elissee, “An introduction to variable and feature selection”, Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
[5] Z. Zhao, S. Shashvata, A. Anand, F. Morstatter, S. Aleyani, et al, “Advancing feature selection research”, http://featureselection.asu.edu/index.php , 2010.
[6] Masayasu Hara, Yukihide Kanemitsu, Takashi Hirai, Koji Komori, et al, “Negative Serum Carcinoembryonic Antigen has Insufficient Accuracy for Excluding Recurrence from Patients with Dukes C Colorectal Cancer: Analysis with Likelihood Ratio and Posttest Probability in a Follow-Up Study”, DOI vol. 51, pp. 1675-1680,2008.
[7] Akobeng AK, et al, “Understanding diagnostic tests 2: likelihood ratios, pre-and post-test probabilities and their use in clinical practice”, Acta Paediatr , vol. 96, pp. 487-491, 2007.
[8] John Attia et al, “Moving beyond sensitivity and specificity: using likelihood ratios to help interpret diagnostic tests”, Australian Prescriber, vol. 26, pp. 111-113, 2003.
[9] Alexia Iasonos, et al, ” How To Build and Interpret a Nomogram for Cancer Prognosis”, JOURNAL OF CLINICAL ONCOLOGY, vol. 26, pp. 1364-1370, 2010.
[10] M Sorbellini, MW Kattan, ME Snyder, et al, “A postoperative prognostic nomogram predicting recurrence for patient wuth conventional clear cell renal cell carcinoma”, The journal of urology, vol. 173, pp. 48-51 , 2005.
[11] Halkin A, Reichman J, Schwaber M, Paltiel O, Brezis M, “Likelihood ratios: getting diagnostic testing into perspective”, Q J Med , vol. 91, pp. 247–258,1998.
[12] Espallardo NL, “Decisions on diagnosis in family practice: use of sensitivity, specificity, predictive values and likelihood ratios”, Asia Pacific Family Medicine , vol. 2, pp. 229–232, 2003.
[13] David L. Simel, et al, “Likelihood ratios with confidence: sample size estimation for diagnostic test studies”, J clin Epidmiol, vol. 44, pp. 763-770, 1991.
[14] Fagan TJ, “Nomogram for Bayes theorem”, N Engl J Med, vol. 31, pp. 293- 257, 1975.
[15] R. Van Oirbeek , E. Lesaffre, “Assessing the predictive ability of a multilevel binary regression model”, Computational Statistics and Data Analysis, vol. 56, pp. 1966-1980, 2012.
[16] Patrick J. Heagerty, Yingye Zheng, “Survival Model Predictive Accuracy and ROC Curves”, Biometrics, vol. 61, pp. 92-105, 2005.
[17] Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS, “Evaluating
the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond”, Statistics in Medicine, vol. 27, pp. 157-172, 2008.
[18] Vickers AJ, Elkin EB, “Decision curve analysis: a novel method for evaluating prediction models”, Medicine Decision Making, vol. 26, pp. 565-574, 2006.
[19] Pencina, M. J. and D’Agostino, R. B., “Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation”, Statistics in Medicine, vol. 23, pp. 2109–2123, 2004.
[20] Ewout W. Steyerberg, Andrew J. Vickers, Nancy R. Cook, et al , “Assessing the Performance of Prediction Models”, Epidemiology, Vol. 21, pp. 128-138, 2010.
[21] Vikas C. Raykar, Harald Steck, Balaji Krishnapuram, “On Ranking in Survival Analysis: Bounds on the Concordance Index”, In Advances in Neural Information Processing Systems , MIT Press, 2008.
[22] Ickwon Choi, Brian J. Wells, Changhong Yu, Michael W. Kattan, “An empirical approach to model selection through validation for censored survival data”, Journal of Biomedical Informatics, vol. 44, pp. 595-606, 2011.
[23] James A. Koziol, Zhenyu Jia, “The Concordance Index C and the Mann–Whitney Parameter Pr(X>Y) with Randomly Censored Data”, Biometrical Journal, vol. 51, pp. 467-474, 2009.
[24] Frank E. Harrell, et al, “Regression modelling strategies for improved prognostic prediction”, Statistic in medicine, vol. 3, pp. 143-152,1984.
[25] D’Agostino, R. B. and Pozen, M. W, “The logistic function as an aid in the detection of acute coronary disease in emergency patients (a case study)”, Statistics in Medicine, vol. 1, pp. 41-48, 1982.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15928-
dc.description.abstract近年來資訊系統的發展,各種資料也都儲存於電腦資料庫系統當中,而各種預測模型也因此蓬勃發展,其應用的範圍相當廣泛舉凡社會學、經濟學到臨床醫學皆廣為使用,以臨床醫學來說,能夠預先估計病患的死亡機率或者是特定疾病的復發機率對研究人員或者醫生是相當重要的。這些模型的建構過程中亦能識別出一些重要的資訊,將一些其他因素放入或許能從中發現一些意料之外被忽略卻重要的因素,因而對臨床的方向或是目標有所改變。而對於這些海量的資料若想從中提取一些潛在的有用信息,便需要一些特定的方法計算分析,因而發展了很多種不同的資料挖掘演算法,而在資料挖掘的過程中,為了提升機器學習的效能與資料挖掘結果的精準度,特徵變數選擇也越來越受到重視,進而產生了許多特徵變數選擇演算法以提升資料挖掘效能。對於大量資料且高維度的資料庫來說,若欲進行資料挖掘,特徵變數選擇是不可或缺的。有了好的特徵變數選擇能夠幫助研究人員去除不必要的資料,更針對有意義的資料作分析。
綜合以上之論點,本研究主要目的為利用諾模圖推導出病人結果的預測計分,而諾模圖為邏輯斯迴歸模型所延伸出的圖像視覺呈現,並對於迴歸模型進行特徵變數選擇以篩選出最佳變數子集合。研究材料以台大醫院神經重症電腦斷層及手術相關資料庫為資料來源依據,先應用概似比(likelihood ratio)分析各個特徵變數與目標變數的相關程度,以達到第一階段去除冗餘特徵變數的目的。接著在利用一致性指數特徵選擇(c-index feature selection)進一步的逐一去除相對不重要的特徵變數以提取最佳的一組特徵變數,在以邏輯斯迴歸所產生的諾模圖製作成預測模型,並證實其演算法篩選出的該組特徵變數所產生的預測模型的預測能力為一定程度上的精準,可提供臨床研究人員對於特徵變數更加注意其重要性。
zh_TW
dc.description.abstractMost information system had been developed for many years, which various kinds of data are stored in the database system of computer. As various kinds of predictive model are booming. The applications of predictive model in sociology, economics and clinical medicine are commonly used. In clinical medicine, to estimate the patient's risk of death or the probability of recurrence for particular disease is very important. The process of model construction may explore some unexpected factors which had been ignored. If the researchers want to retrieve some important information which had been hidden in mass data, particular methods for computing and analysis are need. For this purpose, several data mining algorithms are created. In the process of data mining, in order to enhancing generalization capability, speeding up learning process and improving model interpretability, feature selection becomes more and more in attention. For high dimensions database, feature selection is important way to reduce the redundant variables before processing the data mining.
Taking above arguments, the main purpose of present research is to derive the predictive scoring function for patients’ outcome from nomogram which is a visualization tool extended from logistic regression model. We used the database of “CT finding and cranial surgery report” from NTUH as material, and apply several methods to obtain the feature subset : first, we use likelihood ratio to provide a summary of how many times more (or less) likely patients with the good outcome are to have that particular result than with poor outcome for each feature variables. After dropping the irrelevant features. Second, we apply the c-index selection to repeatedly calculate the c-index of the logistic regression model which drop a different feature variable a time, and select the subset with maximum c-index of the model. In this thesis, we also compare it with other common variable selection criterion of logistic regression model, and validate the predictive scoring by clinicians with expert knowledge.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:55:38Z (GMT). No. of bitstreams: 1
ntu-101-R99548055-1.pdf: 1850552 bytes, checksum: a97577511eb82359f716bbe5949b49fc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 3
第二章 相關研究 4
2.1 資料挖掘的技術 4
2.2 特徵選擇 6
2.3 概似比(Likelihood Ratios) 9
2.4 諾模圖 10
第三章 材料與方法 12
3.1 研究材料 12
3.2 研究方法 14
3.2.1 資料前處理 (Data Preprocessing) 15
3.2.2 概似比特徵選擇 (Likelihood ratio attributes selection) 16
3.2.3 白氏得分(brier score) 20
3.2.4 一致性指數特徵選擇 (Concordance index attributes selection) 20
3.2.5 邏輯斯迴歸 (logistic regression) 21
第四章 實驗結果 24
4.1 概似比特徵選擇 24
4.2 一致性指數特徵選擇 27
4.3 諾模圖呈現與得分方程式 31
4.4 討論 34
第五章 結論與未來展望 39
5.1 結論 39
5.2 未來展望 40
參考文獻 41
dc.language.isozh-TW
dc.subject邏輯斯迴歸zh_TW
dc.subject預測計分zh_TW
dc.subject諾模圖zh_TW
dc.subject特徵變數選擇zh_TW
dc.subject概似比zh_TW
dc.subjectlikelihood ratio in clinical testen
dc.subjectpredictive scoringen
dc.subjectnomogramen
dc.subjectfeature selectionen
dc.subjectlogistic regressionen
dc.title利用邏輯斯迴歸模型進行特徵選擇延伸諾模圖以獲得預測計分zh_TW
dc.titleDerive Predictive Scoring by Nomogram of the Feature Selection from Logistic Regression Modelen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor蔣以仁
dc.contributor.oralexamcommittee陳中明
dc.subject.keyword預測計分,諾模圖,特徵變數選擇,概似比,邏輯斯迴歸,zh_TW
dc.subject.keywordpredictive scoring,nomogram,feature selection,logistic regression,likelihood ratio in clinical test,en
dc.relation.page43
dc.rights.note未授權
dc.date.accepted2012-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved