請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | Pin-Chieh Chiang | en |
| dc.contributor.author | 江品潔 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:55:14Z | - |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | Bhalla, N., Dernburg, A.F., 2005. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310, 1683-1686.
2. Brenner, S., 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71-94. 3. Chen, K.F., Lai, Y.Y., Sun, H.S., Tsai, S.J., 2005. Transcriptional repression of human cad gene by hypoxia inducible factor-1alpha. Nucleic acids research 33, 5190-5198. 4. Chew, S.K., Chen, P., Link, N., Galindo, K.A., Pogue, K., Abrams, J.M., 2009. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature 460, 123-127. 5. Conradt, B., Horvitz, H.R., 1998. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519-529. 6. Conradt, B., Horvitz, H.R., 1999. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317-327. 7. Derry, W.B., Putzke, A.P., Rothman, J.H., 2001. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591-595. 8. Ellis, R.E., Horvitz, H.R., 1991. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591-603. 9. Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J., Hengartner, M.O., 2000. A conserved checkpoint pathway mediates DNA damage--induced apoptosis and cell cycle arrest in C. elegans. Molecular cell 5, 435-443. 10. Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R., Hengartner, M.O., 1999. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011-1022. 11. Hedgecock, E.M., Sulston, J.E., Thomson, J.N., 1983. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277-1279. 12. Hengartner, M.O., Ellis, R.E., Horvitz, H.R., 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494-499. 13. Huang, M., Graves, L.M., 2003. De novo synthesis of pyrimidine nucleotides; emerging interfaces with signal transduction pathways. Cellular and molecular life sciences : CMLS 60, 321-336. 14. Huang, M., Kozlowski, P., Collins, M., Wang, Y., Haystead, T.A., Graves, L.M., 2002. Caspase-dependent cleavage of carbamoyl phosphate synthetase II during apoptosis. Molecular pharmacology 61, 569-577. 15. Jiang, M., Ouyang, H., Ruan, P., Zhao, H., Pi, Z., Huang, S., Yi, P., Crepin, M., 2011. Chitosan derivatives inhibit cell proliferation and induce apoptosis in breast cancer cells. Anticancer research 31, 1321-1328. 16. Kimble, J., Hirsh, D., 1979. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental biology 70, 396-417. 17. Liu, H., Strauss, T.J., Potts, M.B., Cameron, S., 2006. Direct regulation of egl-1 and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C. elegans homolog of Pbx1. Development 133, 641-650. 18. Nehme, R., Grote, P., Tomasi, T., Loser, S., Holzkamp, H., Schnabel, R., Conradt, B., 2010. Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell death and differentiation 17, 1266-1276. 19. Ou, G., Stuurman, N., D'Ambrosio, M., Vale, R.D., 2010. Polarized myosin produces unequal-size daughters during asymmetric cell division. Science 330, 677-680. 20. Ravichandran, K.S., Lorenz, U., 2007. Engulfment of apoptotic cells: signals for a good meal. Nature reviews. Immunology 7, 964-974. 21. Sendoel, A., Kohler, I., Fellmann, C., Lowe, S.W., Hengartner, M.O., 2010. HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature 465, 577-583. 22. Stergiou, L., Doukoumetzidis, K., Sendoel, A., Hengartner, M.O., 2007. The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell death and differentiation 14, 1129-1138. 23. Sulston, J.E., Horvitz, H.R., 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental biology 56, 110-156. 24. Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N., 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental biology 100, 64-119. 25. Taylor, R.C., Brumatti, G., Ito, S., Hengartner, M.O., Derry, W.B., Martin, S.J., 2007. Establishing a blueprint for CED-3-dependent killing through identification of multiple substrates for this protease. The Journal of biological chemistry 282, 15011-15021. 26. Thellmann, M., Hatzold, J., Conradt, B., 2003. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057-4071. 27. Xu, X., Guo, H., Wycuff, D.L., Lee, M., 2007. Role of phosphatidylinositol-4-phosphate 5' kinase (ppk-1) in ovulation of Caenorhabditis elegans. Experimental cell research 313, 2465-2475. 28. Xue, D., Horvitz, H.R., 1997. Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 390, 305-308. 29. Yang, X., Chang, H.Y., Baltimore, D., 1998. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355-1357. 30. Yi, C.H., Sogah, D.K., Boyce, M., Degterev, A., Christofferson, D.E., Yuan, J., 2007. A genome-wide RNAi screen reveals multiple regulators of caspase activation. The Journal of cell biology 179, 619-626. 31. Yuan, J.Y., Horvitz, H.R., 1990. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Developmental biology 138, 33-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15914 | - |
| dc.description.abstract | 計畫性細胞死亡是多細胞生物發育與維持生理恆定的重要機制,主要分為決定、執行、吞噬、分解四個過程。執行階段主要由四個重要的基因EGL-1、CED-9、CED-4、CED-3所調控。然而,EGL-1的表現如何被調控以及CED-3所作用的受質有哪些進而影響計畫性細胞死亡,目前的研究並不清楚。我們以線蟲為材料,利用線蟲雌雄同體在發育的特定時期會有特定的細胞進行計畫性細胞死亡的特性,分別以正向遺傳學和反向遺傳學為策略,試圖能夠找到一些參與在計畫性細胞死亡的新基因。
在正向遺傳篩選策略的部分,研究室先前的成員觀察到當grp-1和egl-1、ced-4、ced-3雙重突變時會導致尾巴型態異常,但他們分別單獨突變時卻沒有。因此 以一個grp-1突變的敏感化背景,分離出許多個會導致尾巴型態異常的突變。在這個篩選下,CH2126被分離出來,我進一步分析顯示這個突變株有23%的尾巴型態異常,在胚胎1.5摺時期的有0.5倍的細胞屍體下降。除此之外,約有一半的蟲會有多出來的AVM、PVM觸覺神經細胞。利用細胞屍體的性狀搭配單一核單酸多型性做定位我發現這個突變株的性狀可能由雙重突變tp28(位於X染色體)、tp190(位於II染色體)所造成。進一步遺傳分析,發現tp190就是造成多出來的AVM、PVM觸覺神經細胞和尾巴型態異常性狀的突變。 在反向遺傳篩選策略的部分,過去學者找到一些可能參與在果蠅計畫性細胞死亡的基因。我們與NHRI的陳俊宏老師合作,利用資料庫的比對,首先找到這些基因在線蟲的相對應基因,再以RNA干擾術降低這些基因表現並觀察。我們發現大部分基因在線蟲生殖細胞的計畫性細胞死亡可能也扮演功能,而hum-5和cbd-1可能同時也參與在體細胞計畫性死亡。 我的正、反向遺傳研究結果顯示,尚有一些先前未知的基因可能同時影響線蟲體細胞和生殖細胞之計畫性細胞死亡,而他們的功能可能在演化上具有保守性。 | zh_TW |
| dc.description.abstract | Programmed cell death is important for development and homeostasis for multicellular organisms. The process for programmed cell death consists of four steps: decision, execution, engulfment, and degradation. In C. elegans, the execution step is regulated by EGL-1/BH-3 only protein, CED-9/Bcl-2, CED-4/Apaf-2 and CED-3 / caspase. However, the regulators of egl-1 transcription, and the identities of CED-3 substrates are not clear. To identify new players regulating programmed cell death, we performed both forward and reverse genetic screens.
The forward genetic screen was based on a previous observation that the double mutants of grp-1 and egl-1, ced-3 or ced-4 show a synthetic tail defect, but their respective single mutants do not. Thus, several mutations that result in a tail defect in the sensitized grp-1 background were isolated. CH2126, a noteworthy strain with 23% penetrance of the tail defect, was shown to be grp-1-dependent. In addition, this strain has a decreased cell corpse number at the1.5-fold embryonic stage and extra touch neurons AVM and PVM in larvae. Through SNP mapping, the decreased cell corpse phenotype was found to have been caused by double mutations: tp28 (on chromosome X) and tp190 (on chromosome II). Further genetic analysis showed that the extra touch neuron phenotype and the tail defect were the result of the tp190 but not tp28 mutation. In a reverse genetic approach, we focused on some candidate genes whose homologues in Drosophila have been indicated to be important for programmed cell death by RNA interference. Through collaboration with Dr. Chun-Hong Chen in NHRI, we set out to test if any of these genes may have a conserved role in cell death in C. elegans. By RNA interference and subsequent cell corpse analysis, our data suggest that some of these genes may play a role in germ cell death and that hum-5 and cbd-1 may also affect somatic cell deaths in C. elegans. Both forward and reverse genetics approaches show that additional components are involved in programmed cell death in C. elegans and their functions may be conserved in multicellular organisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:55:14Z (GMT). No. of bitstreams: 1 ntu-101-R99b43029-1.pdf: 1123510 bytes, checksum: e6e7f804a6f7c91d12b5099869dcecac (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 內容
中文審定書 i 致謝 ii 中文摘要 iii Abstract v 前言 1 實驗方法與材料 7 線蟲株使用 7 顯微鏡使用 8 細胞屍體觀察 8 觸覺神經細胞增加的分析 8 單一核甘酸多型性定位 8 核醣核甘酸干擾 9 UV誘發的生殖細胞凋亡 9 統計分析 9 結果 11 PART I-正向遺傳學尋找參與在計畫性細胞凋亡的新基因 11 CH2126有表現異常的尾巴型態 11 CH2126有較低的細胞屍體和多的觸覺神經細胞 11 CH2126可能有不只一個突變會造成細胞屍體數下降 12 CH2126突變基因所在的位置位於第二條和X染色體 12 CH2126細胞屍體下降主要來自於tp190, 而且tp28無法加成tp190對細胞屍體數的影響 14 tp190會有多的觸覺神經細胞,而tp28不會 14 grp-1:tp190有異常的尾巴型態,而grp-1;tp28沒有 15 tp190與grp-1有synthetic tail defect 15 PART II- 反向遺傳學尋找作用在線蟲生殖細胞凋亡的調控子 17 以RNAi抑制這些來自果蠅15個候選基因的表現,其中有13個基因的抑制對線蟲生殖細胞凋亡有顯著的影響 17 hum-5、cbd-1影響生殖細胞與體細胞的計畫性細胞死亡 18 PART III- pyr-1在線蟲生殖細胞計畫性細胞死亡的角色 19 pyr-1不影響生殖細胞凋亡 19 pyr-1突變株對UV引發的生殖細胞凋亡有正常的反應 19 討論 21 參考文獻 26 圖表 31 List of tables 31 Table 1. CH2126這個突變株與grp-1相比有較高的尾巴型態異常 31 Table 2.CH2126突變株有較低的細胞屍體數 32 Table 3. CH2126有多的神經觸覺細胞 33 Table 4. CH2126可能有不只一個突變會造成細胞屍體數下降 34 Table 5. tp190、tp28皆會造成細胞屍體數下降 35 Table 6. tp190有多的觸覺神經細胞,而tp28沒有 36 Table 7. grp-1:tp190有異常的尾巴型態,而grp-1;tp28沒有 37 Table 8. tp190與grp-1有synthetic tail defect 39 Table 9. 15個來自果蠅參與在計畫性細胞死亡的候選基因 40 Table 10. hum-5(ok1885)影響生殖細胞與體細胞的計畫性細胞死亡 41 Table 11. cbd-1(ok2931) 影響生殖細胞與體細胞的計畫性細胞死亡 42 Table 12. pyr-1不影響生殖細胞凋亡 43 Table 13. pyr-1突變株對UV引發的生殖細胞凋亡有正常的反應 44 List of figures 45 Figure 1. CH2126的尾巴型態異常 45 Figure 2. CH2126 SNP mapping顯示突變基因可能位於II和X染色體 46 Figure 3. X染色體上的突變tp28可能位於-2.76~2.86 cM之間 48 Figure 4.將tp190;tp28上的兩個突變分開的方法 49 Figure 5. CH2126細胞屍體下降主要來自於tp190, 而且tp28無法加成tp190對細胞屍體數的影響 50 Figure 6. 分析觸覺神經細胞單獨突變的交配流程 51 Figure 7. grp-1;tp190與grp-1相比有多的觸覺神經細胞 52 Figure 8. grp-1:tp190有異常的尾巴型態,而grp-1;tp28沒有 53 Figure 9.以RNAi抑制這些來自果蠅15個候選基因的表現,其中有13個基因的抑制對線蟲生殖腺細胞凋亡有顯著的影響 54 Figure 10. 以RNAi抑制ppk-1可以看到線蟲整個生殖腺都是細胞屍體 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 計畫性細胞死亡 | zh_TW |
| dc.subject | 細胞屍體 | zh_TW |
| dc.subject | RNA干擾 | zh_TW |
| dc.subject | 單一核甘酸多型性 | zh_TW |
| dc.subject | 線蟲 | zh_TW |
| dc.subject | programmed cell death | en |
| dc.subject | RNA interference | en |
| dc.subject | Single-nucleotide polymorphism(SNP) | en |
| dc.subject | cell corpse | en |
| dc.subject | C. elegans | en |
| dc.title | 尋找與計畫性細胞死亡相關之新基因 | zh_TW |
| dc.title | Identifying new Programmed Cell Death Genes in C.elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪宏達(Horng-Dar Wang),廖秀娟,潘俊良 | |
| dc.subject.keyword | 計畫性細胞死亡,線蟲,單一核甘酸多型性,RNA干擾,細胞屍體, | zh_TW |
| dc.subject.keyword | programmed cell death,C. elegans,Single-nucleotide polymorphism(SNP),RNA interference,cell corpse, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
