請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馬小康 | |
| dc.contributor.author | Po-Yen Chen | en |
| dc.contributor.author | 陳博彥 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:55:12Z | - |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | [1] W. J. Spencer et al. , “An electronically controlled piezoelectric insulin pump and valves”, IEEE transactions on sonics and ultrasonics, 25(1978)
[2] H. T. G Van Lintel, F. C. M. Van De Pol, S.Bouwstra, “A piezoelectric micropump based on micromachining of silicon”, Sensors and Actuators, 15(1988) 153-167 [3] J. G. Smits, “Piezoelectric micropump with three valves working peristaltically”, Sensors and Actuators, A21-A23(1990) 203-206 [4] R. Zengerle, A. Richter, H. Sandmaier, “A micro membrane pump with electrostatic actuation”, IEEE Micro Electro Mechanical Systems, (1992)19-24 [5] E. Stemme, G. Stemme, “A valveless diffuser/nozzle-based fluid pump”, Sensors and Actuators A, 39(1993) 159-167 [6] A. Olsson, G. Stemme, E. Stemme, “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators A, 46-47(1995) 549-556 [7] A. Ulmann, “The piezoelectric valve-less pump-performance enhancement analysis ” , Sensors and Actuators A, 69(1998) 97-105 [8] A. Olsson, G. Stemme, E. Stemme, “A numerical design study of the valveless diffuser pump using a lumped-mass model”, Journal of Micromechanics and Microengineering, 9 (1999) 34-44 [9] M. Khoo, C. Liu, “A novel micromachined magnetic membrane microfluid pump”, Proceeding of the 22nd Annual EMBS Int. Conference, (2000)2394-2397 [10] J. Tsai, L. Lin, “A thermal-bubble-actuated micronozzle-diffuser pump”, Journal of Microelectromechanical systems, 11(2002) 665-671 [11] P. Woias, “Micropumps-past, progress and future prospects”, Sensors and Actuators B, 105(2005) 28-38 [12] T. Zhang, Q. M. Wang, “Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices”, Journal of Power Sources, 140(2005) 72-80 [13] E. G. Kim, J. G. Oh, B. Choi, “A study on the development of a continuous peristaltic micropump using magnetic fluids”, Sensors and Actuators A, 128(2006) 43–51. [14] J. Kan et al., “Development of serial-connection piezoelectric pumps”, Sensors and Actuators A, 144(2008) 321-327 [15] C. R.de Lima et al., “A biomimetic piezoelectric pump:Computational and experimental characterization”, Sensors and Actuators A, 152(2009) 110-118 [16] S. L. Vatanabe et al., “Design and characterization of a biomimetic piezoelectric pump inspired on group fish swimming effect”, Journal of intelligent material systems and structures, 21(2010) [17] M. L. Cantwell, F. Amirouche, J. Citerin, “Low-cost high performance disposable micropump for fluidic delivery applications ”, Sensors and Actuators A, 168(2011) 187-194 [18] A. F. P. van Putten and S. Middelhoek, Integrated silicon anemometer. Electronic Letters, 10(1974) 425–426. [19] A.F.P. van Putten, An integrated silicon double bridge anemometer. Sensors and Actuators, 4(1983) 387–396. [20] O. Tabata, H. Inagaki, I. Igarashi, and T. Kitano, Fast response silicon flow sensor with a thermal isolation structure. Proceeding of the 5th Sensor Symposium, The Institute of Electrical Engineers of Japan, Japan, (1985), pp. 207–211. [21] J. Tanaka, A. Jinda, H. Tabuchi, N. Tanaka, H. Furubayashi, Y. Inami, and M. Hijikigawa, A micro flow sensor with a substrate having a low thermal conductivity. Proceeding of the 6th Sensor Symposium, The Institute of Electrical Engineers of Japan, Japan, (1986) pp. 125–129. [22] Y.C. Tai, and R.S Muller, Lightly-doped polysilicon bridge as a flow meter. Sensors and Actuators A, 15(1988) 63–75. [23] R. Kiehnscherf, N.T. Nguyen, and M. Schulze, Elektrokalorischer Durchflußmengensensor fu‥ r Gase und O‥ le. F & M Feinwerktechnik Mikrotechnik Messtechnik, 9/94, 402–406. [24] N.T. Nguyen, and R. Kiehnscherf, Low-cost silicon sensors for mass flow measurement of liquids and gases. Sensors and Actuators A, 49(1995) 17–20. [25] H. Kuttner, G. Urban, A. Jachimowicz, F. Kohl, F. Olcaytug, and P. Goiser, Microminiaturized thermistors arrays for temperature gradient, flow and perfusion measurements. Sensors and Actuators A, 25-27(1991) 641–645. [26] T. Neda, K. Nakamura, and T. Takumi, A polysilicon flow sensor for gas flow meters. Sensors and Actuators A, 54(1996) 626–31. [27] S. Wu, Q. Lin, Y. Yuen, Y.C. Tai, MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A, 89(2001) 152-158. [28] P. Bruschi, D. Navarrini, M. Piotto, A flow sensor for liquids based on a single temperature sensor operated in pulsed mode. Sensors and Actuators A, 110(2004) 269–275. [29] M. Shikida, T. Yokota, S. Ukai, K. Sato, Fabrication of monolithically integrated flow sensor on tube. Sensors and Actuators A, 163(2010) 61-67. [30] H. K. Ma, B. R. Hou, H. Y. Wu, C. Y. Lin, ”Development and application of a diaphragm micro-pump with piezoelectric device”, Microsyst Technol, 14(2008) 1001-1007 [31] 林政瑤, “單邊擺動壓電式薄膜泵之設計與效能分析”, 國立台灣大學機械工程所碩士論文, (2008) [32] H. K. Ma, B. R. Hou, H. Y. Wu, C. Y. Lin, ”Development of an OAPCP micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36(2009) 225-232 [33] 高仲志, “壓電式薄膜泵結合冷卻水套(散熱式微泵)應用於筆記型電腦之研究”, 國立台灣大學機械工程所碩士論文, (2008) [34] 陳柏仁, “單邊擺動壓電式薄膜泵之設計與應用分析”, 國立台灣大學機械工程所博士論文, (2008) [35] 黃致崴, ”單邊擺動壓電式無閥薄膜泵之效能分析”, 國立台灣大學機械工程所碩士論文, (2009) [36] 蕭育政, ”單邊擺動壓電式無閥薄膜泵之數值模擬”, 國立台灣大學機械工程所碩士論文, (2009) [37] 李易翰, ”薄型單邊擺動壓電式無閥薄膜泵性能分析”, 國立台灣大學機械工程所碩士論文, (2010) [38] 吳家禕, ”可調頻式壓電片應用於醫療用PCA投藥幫浦之設計與效能分析”, 國立台灣大學機械工程所碩士論文, (2011) [39] 林紋瑞, “評估細胞力學之微陣列力量感測系統研發”, 國立成功大學醫學工程研究所碩士論文, (2004) [40] APC International, Ltd. , “Standard Stripe Actuator TM Product Specifications ”, APC International , Ltd. [41] William T. Thomson, “Theory of vibration with applications, second ed.”, (1981) [42] L. V. King, “On the convection of heat from small cylinders in a streambof fluid: Determination of the convection constants of small platinum wires, with application to hot-wire anemometry”, Proc. Royal Soc.London, vol. 90, (1914) pp. 563–570. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15913 | - |
| dc.description.abstract | 本研究搭配實驗室研究團隊所設計的單邊擺動壓電式薄膜泵,設計一流量感測器,藉由調整壓電片驅動頻率改變驅動流量大小,再以流量感測器感測不同流量的變化。流量感測器流道採用鋁材質加工而成,整體尺寸為80 mm × 30 mm × 20 mm,採用加熱片作為加熱元件,利用工作流體將熱帶走,在固定加熱功率下,利用流量和加熱元件表面溫度之間的關係作為感測流量之方式。本實驗採用的薄膜泵設計,經實驗後的結果,得到在150 Hz時,有最大流量1.13 mL/s,最大揚程為1366.0 Pa,而感測器的實驗結果顯示感測器的效能會受加熱功率大小以及流量大小影響,在功率大以及流量小的時候感測器的靈敏度有比較好的表現;另外對於感測器流道的懸臂式設計做了實驗驗證,採用懸臂式設計能夠增進隔熱效果,有助於改善感測器之效能。 | zh_TW |
| dc.description.abstract | In this study, a new flow sensor combined with the valveless one-side actuating piezoelectric micropump has been successfully developed. The dimension of the flow sensor is 80 mm × 30 mm × 20 mm. The flow sensor uses a silicone heater that is fixed on the top of the microchannel and dissipates the heat by the flow inside the channel. Under constant heating power, we can obtain the relationship between the surface temperature of the heater and the flow rate and use it to measure the flow rate. The maximum flow rate of the valveless micropump is 1.13 mL/s at 150 Hz; while the maximum pump head can reach 1366.0 Pa. The experimental results indicate that the performance of the flow sensor is dominated by the heating power and the flow rate, and the performance is enhanced with increasing the heating power or decreasing the flow rate. Besides, the design of the microchannel suspended from the substrate to improve thermal isolation also proves better performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:55:12Z (GMT). No. of bitstreams: 1 ntu-101-R99522108-1.pdf: 2333808 bytes, checksum: 63755bd68259eb9c47ab36704bab59c5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 VI 表目錄 IX 符號說明 X 一. 英文字母 X 二. 希臘字母 XII 第一章 緒論 1 1.1 前言 1 1.2 泵的分類 2 1.3 感測器的分類 3 1.4 文獻回顧 4 1.3.1 微型泵 4 1.3.2 熱式流量感測器 8 1.5 單邊擺動壓電式薄膜泵發展 9 1.6 研究動機和目的 11 1.7 研究內容 12 第二章 設計與原理 13 2.1 無閥薄膜泵設計 13 2.1.1 腔體 13 2.1.2 薄膜 14 2.1.3 壓電裝置 15 2.2 流量感測器設計 16 2.2.1 流道 16 2.2.2 加熱片 17 2.3 無閥泵工作原理 17 2.4 無閥泵理論分析 18 2.4.1 壓電效應 18 2.4.2 單邊擺動機制 20 2.5 流量感測器工作原理 21 2.6 流量感測器理論分析 22 2.6.1 熱傳分析 22 2.6.2 靈敏度分析 23 第三章 實驗設計和步驟 24 3.1 實驗項目 24 3.1.1 感測器流道懸臂式設計影響 24 3.1.2 加熱長度影響 24 3.2 實驗架設 25 3.3 實驗儀器 26 3.4 實驗流程 27 3.4.1 流量實驗 27 3.4.2 揚程實驗 28 3.4.3 流量感測器實驗 29 3.4.4 量測壓電片消耗功率 30 第四章 結果和討論 31 4.1 單邊擺動壓電式無閥薄膜泵性能 31 4.2 流道懸臂式設計對流量感測器性能的影響 31 4.2.1 固定流量溫度比較 31 4.2.2 固定熱源輸入功率溫度比較 32 4.2.3 Nu和Re關係之比較 33 4.3 加熱長度對流量感測器性能的影響 34 第五章 結論 35 5.1 結論 35 5.2 建議與未來展望 36 | |
| dc.language.iso | zh-TW | |
| dc.subject | 無閥 | zh_TW |
| dc.subject | 壓電 | zh_TW |
| dc.subject | 薄膜泵 | zh_TW |
| dc.subject | 單邊擺動 | zh_TW |
| dc.subject | PDMS | zh_TW |
| dc.subject | 流量感測器 | zh_TW |
| dc.subject | Piezoelectric | en |
| dc.subject | Valveless | en |
| dc.subject | PDMS | en |
| dc.subject | Flow sensor | en |
| dc.subject | Diaphragm micropump | en |
| dc.subject | One-side actuation | en |
| dc.title | 熱式流量感測器結合單邊擺動壓電式無閥薄膜泵之研究 | zh_TW |
| dc.title | Study of a Thermal Flow Sensor integrated with a Valveless One-side Actuating Diaphragm Micropump | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王興華,顏溪成 | |
| dc.subject.keyword | 單邊擺動,薄膜泵,壓電,無閥,流量感測器,PDMS, | zh_TW |
| dc.subject.keyword | One-side actuation,Diaphragm micropump,Piezoelectric,Valveless,Flow sensor,PDMS, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
