Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15893Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee-Wee Liu) | |
| dc.contributor.author | Tien-Shao Chuang | en |
| dc.contributor.author | 莊天劭 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:54:42Z | - |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-16 | |
| dc.identifier.citation | [1] J. Schmidt et al. J. Appl. Phys., Septemper 1999
[2] K. Bothe, J. Schmidt, and R.Hezel, “Effective reduction of metastable defect concentration in Boron-doped Chochralski silicon for solar cells,” in Proc. 29th Photovoltaic Spec. Conf., 2002, pp. 194-197. [3] S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, “Minority carrier lifetime degradation in boro-doped Czochralski silicon“, Journal of Applied Physics 90, 2001, pp. 2397-2404. [4] Peter J. Cousins et al., 'GENERATION 3: IMPROVED PERFORMANCE AT LOWER COST', IEEE (2010) [5] A. Asuha, Y. Liu, O. Maida, M. Takahashi, and H. Kobayashi, J. Electrochem. Soc. 151, 824 (2004) [6] B. Hoex et al., Appl. Phys. Lett. 89 (2006) p042112. [7] B. Hoex et al., Appl. Phys. Lett. 91 (2007) p112107. [8] B. Hoex et al., J. Applied Phys. 104, 044903, 2008 [9] B. Hoppe, Mikroelektronik 2. Würzburg: Vogel Verlag, 1998 [10] R.C.G. et al., “ECN N-TYPE SILICON SOLAR CELL TECHNOLOGY: AN INDUSTRIAL PROCESS THAT YIELDS 18.5%”, IEEE 2009 [11] Yuan Taur, Tak H Ning, “ Fundamentals of modern VLSI devices”, p16. [12] Kunihiro Matsukuma, Keiichi Morita, Terunori Warabisako, “Performance simulation for bifacial silicon solar cell”, Solar Energy Material and Solar Cells 34 (1994) 141-148 [13] http://www.yinglisolar.com/cn/products/monocrystalline/ [14] M.J. Kerr, Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells, Australian National University, 2002. [15] A.R. Burgers et al. ,“ECN 19 efficiency n type si solar cells made in pilot production”, 25th European Photovoltaic Solar Energy Conference and Exhibition, 2010 [16] A.R. Burgers et.al, “19.5% EFFICIENT N-TYPE SI SOLAR CELLS MADE IN PRODUCTION”, 26th European Photovoltaic Solar Energy Conference and Exhibition, 5-9 September 2011, Hamburg, Germany [17] A. Asuha, Y. Liu, O. Maida, M. Takahashi, and H. Kobayashi, J. Electrochem. Soc. 151, 824 (2004). [18] Valentin D. Mihailetchi et. al, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells”, APPLIED PHYSICS LETTERS 92, 063510 (2008) [19] R.J. Schwartz et al., Silicon solar cells for high concentration applications, in Technical Digest of the International Electron Devices Meeting (1975). [20] M.D. Lammert and R.J. Schwartz, The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight, IEEE Transactions on Electron Devices, ED-24 (4), 337-42, (1977). [21] R.M. Swanson, A.K. Beckwith, R.A. Crane, W.D. Eades, Y.H. Kwark, and R.A. Sinton, Point-contact silicon solar cells, IEEE Transactions on Electron Devices, 31 (5), 661-4, (1984). [22] R.A. Sinton, Y. Kwark, J.Y. Gan, and R.M. Swanson, 27.5-percent silicon concentrator solar cells, IEEE Electron Device Letters, EDL-7 (10), 567-9, (1986). [23] W.P. Mulligan et al., Manufacture of solar cells with 21% efficiency, in Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 387-90 (2004). [24] Efficiency table of SunPower Corporation from 35th IEEE PVSC [25] W.P. Mulligan et al., Solar cell and method of manufacture, in US Patent, USA, US 7,339,110 B1, (2008). [26] F. Grank, ”HIGH EFFICIENCY BACK-CONTACT BACK JUNCTION SILICON SOLAR CELLS”, Fraunhofer Institute for Solar Energy Systems (ISE) (2009) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15893 | - |
| dc.description.abstract | 矽晶太陽能電池在太陽能產業上依舊佔有大部分的, 其原因主要來自於矽晶太陽能電池的穩定與半導體工業的成熟有很大關係。本論文主要在討論N型矽基板太陽能電池的模擬結果, 根據目前市場上已量產的N型太陽能電池, 像是SunPower的指叉式太陽能電池, 以及Yingli的雙面照光型太陽能電池, 分別進行模擬與分析。
摻雜離子主要是利用離子佈植的方式進行摻雜。接著考慮熱退火條件中, 乾氧對在N型矽基板的硼的影響來做片電阻模擬。再來考慮實際上各種不同的熱退火條件, 與實驗進行較正後, 建立一個模型來預測不同退火條件下的片電阻。 從上所得到經過修正的摻雜離子分佈可以用來進行之後N型太陽能電池的模擬。我們會討論雙面照光型太陽能電池的好處以及設計重點。 最後藉由逆向工程分析, 我們能了解目前 SunPower 的指叉式太陽能電池設計的重點, 以及設計時是如何考慮各個參數, 最後將逆性工程的參數帶進我們的模擬軟體裡進行模擬。 | zh_TW |
| dc.description.abstract | Wafer based silicon solar accounts for a large part in photovoltaic industry is because of the stability of silicon and the mature development in semiconductor industry. In the thesis, the simulation results are based on the N-type silicon based solar cell. According to the solar cells like interdigital back contact (IBC) solar cells by SunPower company and bifacial solar cells by Yingli solar, which both have been in mass production, the simulation and analysis are performed, respectively.
Dopants are implanted by ion plantation. We analyze effects of O2 on the sheet resistance of boron doped region when it is performed thermal oxidation. Later, considering the real activation conditions, we construct a simulation model calibrated with the experimental data to predict the sheet resistance under different activation conditions. Doping profiles calibrated above can be use to simulate the efficiency of N-type solar cell. We discuss the advantages and design rules for bifacial solar cells. Finally, by reverse engineering, we obtain the design parameters for the IBC solar cell, and the efficiency of that parameters are simulated by Sentaurus of Synopsys company. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:54:42Z (GMT). No. of bitstreams: 1 ntu-101-R99941015-1.pdf: 1504389 bytes, checksum: d50d8e5a19d3fa31a314ea56cdb688a9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | List of Figures VIII
List of Tables IX Chapter 1. Introduction 1.1 Background and Motivation 1 1.2 Organization 3 References 4 Chapter 2. Process simulation 2.1 Introduction 5 2.2 Sheet resistance of boron and phosphorus in O2 oxidation 6 2.3 Calibration of sheet resistance by simulation 12 2.4 Summary 18 References 19 Chapter 3. Simulation of bifacial solar cells 3.1 Introduction 20 3.2 Bifacial solar cell with planar structure 21 3.3 Bifacial solar cell simulation with ECN structure 28 3.4 Simulation of double-side-texture bifacial solar cell 33 3.5 Summary 39 References 41 Chapter 4. Analysis of Interdigital back contact (IBC) solar cell and simulation 4.1 Introduction 42 4.2 Characteristic analysis 45 4.3 IBC solar cell simulation 51 4.4 Summary 55 References 56 Chapter 5. Summary and Future Work 5.1 Summary 57 5.2 Future work 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 指叉式太陽能電池 | zh_TW |
| dc.subject | n型矽基 | zh_TW |
| dc.subject | 雙面照光型太陽能電池 | zh_TW |
| dc.subject | interdigital back contact solar cell | en |
| dc.subject | bifacial solar cell | en |
| dc.subject | n-type based silicon | en |
| dc.title | "N型矽基板製程模擬, 指叉式背電極與雙面照光型太陽能電池模擬與分析" | zh_TW |
| dc.title | Process Simulation of N-type Si wafer, and Analysis of Interdigital Back Contact(IBC) and Bifacial Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉銘(Wei-Ming Chen),張書通(Shu-Tung Chang),吳育任(Yu-Ren Wu) | |
| dc.subject.keyword | n型矽基,雙面照光型太陽能電池,指叉式太陽能電池, | zh_TW |
| dc.subject.keyword | n-type based silicon,bifacial solar cell,interdigital back contact solar cell, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 1.47 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
