Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余明俊(Ming-Jiun Yu)
dc.contributor.authorChin-San Looen
dc.contributor.author呂振山zh_TW
dc.date.accessioned2021-06-07T17:54:24Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Nielsen, S., Frokiaer, J., Marples, D., Kwon, T. H., Agre, P. & Knepper, M. A. Aquaporins in the kidney: from molecules to medicine. Physiological reviews 82, 205-244, (2002).
2. Robertson, G. L. Physiology of ADH secretion. Kidney international. Supplement 21, S20-26, (1987).
3. Baylis, P. H. Osmoregulation and control of vasopressin secretion in healthy humans. The American journal of physiology 253, R671-678, (1987).
4. Fenton, R. A., Brond, L., Nielsen, S. & Praetorius, J. Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. American journal of physiology. Renal physiology 293, F748-760, (2007).
5. Yamamoto, T., Sasaki, S., Fushimi, K., Ishibashi, K., Yaoita, E., Kawasaki, K., Marumo, F. & Kihara, I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. The American journal of physiology 268, C1546-1551, (1995).
6. Bichet, D. G. Nephrogenic diabetes insipidus. The American journal of medicine 105, 431-442, (1998).
7. Noda, Y., Sohara, E., Ohta, E. & Sasaki, S. Aquaporins in kidney pathophysiology. Nature reviews. Nephrology 6, 168-178, (2010).
8. Babey, M., Kopp, P. & Robertson, G. L. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nature reviews. Endocrinology 7, 701-714, (2011).
9. Noda, Y. & Sasaki, S. Trafficking mechanism of water channel aquaporin-2. Biology of the cell / under the auspices of the European Cell Biology Organization 97, 885-892, (2005).
10. Nedvetsky, P. I., Tamma, G., Beulshausen, S., Valenti, G., Rosenthal, W. & Klussmann, E. Regulation of aquaporin-2 trafficking. Handbook of experimental pharmacology, 133-157, (2009).
11 Moeller, H. B. & Fenton, R. A. Cell biology of vasopressin-regulated aquaporin-2 trafficking. Pflugers Archiv : European journal of physiology 464, 133-144, (2012).
12. Noda, Y. & Sasaki, S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochimica et biophysica acta 1758, 1117-1125, (2006).
13. Takata, K., Matsuzaki, T., Tajika, Y., Ablimit, A. & Hasegawa, T. Localization and trafficking of aquaporin 2 in the kidney. Histochemistry and cell biology 130, 197-209, (2008).
14. Brown, D. The ins and outs of aquaporin-2 trafficking. American journal of physiology. Renal physiology 284, F893-901, (2003).
15. Tamma, G., Klussmann, E., Procino, G., Svelto, M., Rosenthal, W. & Valenti, G. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. Journal of cell science 116, 1519-1525, (2003).
16. Tamma, G., Klussmann, E., Oehlke, J., Krause, E., Rosenthal, W., Svelto, M. & Valenti, G. Actin remodeling requires ERM function to facilitate AQP2 apical targeting. Journal of cell science 118, 3623-3630, (2005).
17. Weisz, O. A. & Rodriguez-Boulan, E. Apical trafficking in epithelial cells: signals, clusters and motors. Journal of cell science 122, 4253-4266, (2009).
18. Altschuler, Y., Hodson, C. & Milgram, S. L. The apical compartment: trafficking pathways, regulators and scaffolding proteins. Current opinion in cell biology 15, 423-429, (2003).
19. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. & Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics : MCP 1, 376-386, (2002).
20. Tamma, G., Lasorsa, D., Ranieri, M., Mastrofrancesco, L., Valenti, G. & Svelto, M. Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 27, 739-748, (2011).
21. Kall, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature methods 4, 923-925, (2007).
22. Bens, M., Vallet, V., Cluzeaud, F., Pascual-Letallec, L., Kahn, A., Rafestin-Oblin, M. E., Rossier, B. C. & Vandewalle, A. Corticosteroid-dependent sodium transport in a novel immortalized mouse collecting duct principal cell line. Journal of the American Society of Nephrology : JASN 10, 923-934, (1999).
23. Yu, M. J., Miller, R. L., Uawithya, P., Rinschen, M. M., Khositseth, S., Braucht, D. W., Chou, C. L., Pisitkun, T., Nelson, R. D. & Knepper, M. A. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America 106, 2441-2446, (2009).
24. Yu, M. J., Pisitkun, T., Wang, G., Shen, R. F. & Knepper, M. A. LC-MS/MS analysis of apical and basolateral plasma membranes of rat renal collecting duct cells. Molecular & cellular proteomics : MCP 5, 2131-2145, (2006).
25. Marazuela, M. & Alonso, M. A. Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histology and histopathology 19, 925-933, (2004).
26. de Marco, M. C., Martin-Belmonte, F., Kremer, L., Albar, J. P., Correas, I., Vaerman, J. P., Marazuela, M., Byrne, J. A. & Alonso, M. A. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. The Journal of cell biology 159, 37-44, (2002).
27. In, J. G. & Tuma, P. L. MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF-B cells. Traffic 11, 1056-1066, (2010).
28. Moeller, H. B., Praetorius, J., Rutzler, M. R. & Fenton, R. A. Phosphorylation of aquaporin-2 regulates its endocytosis and protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America 107, 424-429, (2010).
29. Kamsteeg, E. J., Duffield, A. S., Konings, I. B., Spencer, J., Pagel, P., Deen, P. M. & Caplan, M. J. MAL decreases the internalization of the aquaporin-2 water channel. Proceedings of the National Academy of Sciences of the United States of America 104, 16696-16701, (2007).
30. Kamsteeg, E. J., Hendriks, G., Boone, M., Konings, I. B., Oorschot, V., van der Sluijs, P., Klumperman, J. & Deen, P. M. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proceedings of the National Academy of Sciences of the United States of America 103, 18344-18349, (2006).
31. Noda, Y., Horikawa, S., Furukawa, T., Hirai, K., Katayama, Y., Asai, T., Kuwahara, M., Katagiri, K., Kinashi, T., Hattori, M., Minato, N. & Sasaki, S. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS letters 568, 139-145, (2004).
32. van Balkom, B. W., Savelkoul, P. J., Markovich, D., Hofman, E., Nielsen, S., van der Sluijs, P. & Deen, P. M. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. The Journal of biological chemistry 277, 41473-41479, (2002).
33. Procino, G., Barbieri, C., Tamma, G., De Benedictis, L., Pessin, J. E., Svelto, M. & Valenti, G. AQP2 exocytosis in the renal collecting duct -- involvement of SNARE isoforms and the regulatory role of Munc18b. Journal of cell science 121, 2097-2106, (2008).
34. Fushimi, K., Sasaki, S. & Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. The Journal of biological chemistry 272, 14800-14804, (1997).
35. Moeller, H. B., Olesen, E. T. & Fenton, R. A. Regulation of the water channel aquaporin-2 by posttranslational modification. American journal of physiology. Renal physiology 300, F1062-1073, (2011).
36. Ding, G. H., Franki, N., Condeelis, J. & Hays, R. M. Vasopressin depolymerizes F-actin in toad bladder epithelial cells. The American journal of physiology 260, C9-16, (1991).
37. Gao, Y., Franki, N., Macaluso, F. & Hays, R. M. Vasopressin decreases immunogold labeling of apical actin in the toad bladder granular cell. The American journal of physiology 263, C908-912, (1992).
38. Holmgren, K., Magnusson, K. E., Franki, N. & Hays, R. M. ADH-induced depolymerization of F-actin in the toad bladder granular cell: a confocal microscope study. The American journal of physiology 262, C672-677, (1992).
39. Simon, H., Gao, Y., Franki, N. & Hays, R. M. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. The American journal of physiology 265, C757-762, (1993).
40. Marazuela, M., Martin-Belmonte, F., Garcia-Lopez, M. A., Aranda, J. F., de Marco, M. C. & Alonso, M. A. Expression and distribution of MAL2, an essential element of the machinery for basolateral-to-apical transcytosis, in human thyroid epithelial cells. Endocrinology 145, 1011-1016, (2004).
41. de Marco, M. C., Puertollano, R., Martinez-Menarguez, J. A. & Alonso, M. A. Dynamics of MAL2 during glycosylphosphatidylinositol-anchored protein transcytotic transport to the apical surface of hepatoma HepG2 cells. Traffic 7, 61-73, (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15881-
dc.description.abstract在抗利尿激素(antidiuretic hormone vasopressin)的刺激之下,腎臟集尿管細胞中的水通道蛋白(aquaporin-2, AQP2)會從細胞內液胞轉運到細胞頂膜(apical plasma membrane)上,藉此增加腎臟集尿管細胞對水分的通透性以及再吸收。 上述調控機制對於身體水分平衡扮演重要的角色,然而AQP2頂膜轉運的分子機制尚未被完全瞭解。 我們以生物素標定術(surface biotinylation)配合上卵白素純化術(streptavidin affinity chromatography)收集小鼠集尿管細胞株(mpkCCD)頂膜上之蛋白質,再藉由SILAC為基礎的定量蛋白質體學方法分析受抗利尿激素調控並參與頂膜轉運的蛋白質。 在三重複實驗之下,我們一共鑑定出1,028個蛋白質,其中100個蛋白質會因在抗利尿激素類似物(dDAVP)的刺激而在頂膜區域上有量的變化,其中有45個蛋白質是增加,而有55個蛋白質是減少。 進一步利用DAVID Gene Ontology分析得知有變化之蛋白質主要扮演著蛋白質分佈(protein localization)以及肌動蛋白骨架重組(actin cytoskeletal reorganization)之角色。 在這100個受dDAVP調控之蛋白質中,有4個蛋白質在dDAVP刺激下增加至1.4倍(log2[dDAVP/vehicle]>0.5)以上的量,分別為Aquaporin-2,Protein Mal2,Clamin isoform b與MAGUK p55 subfamily member 5;另外Tumor necrosis factor receptor superfamily member 10B precursor則是減少至1.4倍(log2[dDAVP/vehicle]<-0.5)。 我們利用細胞免疫螢光染色(immunofluorescence staining)與免疫墨點法(immunoblotting)證實Protein Mal2 (MAL2) 會在dDAVP刺激之下轉運至細胞頂膜上。 先前研究指出MAL2為一種脂筏(lipid raft)蛋白質且與細胞頂膜蛋白質之胞轉作用(transcytosis)有關。 我們的結果顯示部分AQP2在dDAVP刺激下會移動到被認為是脂筏的detergent-resistant membrane fraction中。 因此,我們的研究顯示經由抗利尿激素調控的AQP2頂膜轉運可能需要皮質肌動蛋白細絲的動態變化與MAL2脂筏蛋白質的參與。zh_TW
dc.description.abstractIn response to the antidiuretic hormone vasopressin, the molecular water channel protein aquaporin-2 (AQP2) redistributes from the intracellular vesicles to the apical plasma membrane to increase water permeability of the renal collecting ducts. This vasopressin-regulated water permeability is critical to whole body water homeostasis; however, the molecular details of the AQP2 trafficking mechanism are largely unknown. Here, we used surface biotinylation and streptavidin affinity chromatography to enrich for apical membrane proteins of the mouse cortical collecting duct (mpkCCD) cells followed by SILAC based quantitative proteomics to identify potential apical trafficking machinery regulated by vasopressin. A total of 1,028 proteins were quantified in three replicates. Among the quantified proteins, 100 showed significant changes in abundance in response to the vasopressin analog dDAVP (p<0.05) including 45 increased and 55 decreased proteins. DAVID Gene Ontology term analysis of these changed proteins revealed predominant roles of these proteins in protein localization and actin cytoskeletal reorganization. Among the dDAVP-regulated proteins, 4 proteins (Aquaporin-2, Protein Mal2, Clamin isoform b, and MAGUK p55 subfamily member 5) showed significant increases greater than 1.4 fold (log2[dDAVP/vehicle]>0.5) in response to dDAVP versus vehicle; 1 protein (Tumor necrosis factor receptor superfamily member 10B precursor) showed a significant decrease greater than 1.4 fold (log2[dDAVP/vehicle]<-0.5). Immunoblotting and immunofluorescence staining of Protein Mal2 (MAL2) confirmed apical translocation of MAL2 in response to dDAVP stimulation. MAL2 is a lipid raft protein thought to mediate trafficking of apical membrane proteins via transcytosis. In response to dDAVP, a portion of AQP2 moves into detergent-resistant membrane fraction (i.e. lipid raft). Our data suggests that vasopressin-mediated apical AQP2 trafficking involves dynamic changes in cortical actin filaments and potentially involves the lipid raft protein MAL2.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:54:24Z (GMT). No. of bitstreams: 1
ntu-101-R99442035-1.pdf: 5632833 bytes, checksum: bc3d657618d57e99e41ffaedf764cd1d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝(I)
中文摘要(III)
Abstract(V)
Introduction(1)
Materials(4)
Methods(10)
Results(21)
A Cell Model for Vasopressin-Induced Aquaporin-2 Apical Trafficking(21)
Enrichment of mpkCCD Apical Membrane Proteome Using Surface Biocytin Hydrazide Labeling and Streptavidin Affinity Chromatography(22)
Summary of SILAC Samples Preparation for LC-MS/MS Analysis(24)
Gene Ontology Analysis of the Apical Membrane Proteome of the mpkCCD Cells(25)
Dual Statistical Analysis of Identified Proteins(26)
A Potential Role of Protein Mal2 in Vasopressin-Regulated Apical AQP2 Trafficking(27)
Discussion(29)
Figures and Legends(34)
Tables(44)
Supplemental data(48)
References(49)
dc.language.isoen
dc.title以定量蛋白質體學分析小鼠集尿管細胞株(mpkCCD)頂尖膜蛋白體受抗利尿激素刺激之變化zh_TW
dc.titleQuantitative Analysis of Apical Membrane Proteome of mpkCCD Cells in Response to Vasopressinen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李芳仁(Fang-Jen Lee),李明學(Ming-Shyue Lee),邱繼輝(Kay-Hooi Khoo),郭津岑(Jean-Cheng Kuo)
dc.subject.keywordaquaporin-2,apical trafficking,apical proteome,SILAC quantitative,zh_TW
dc.subject.keyword第二型水通道蛋白,頂膜轉運,頂膜蛋白質體,SILAC定量,en
dc.relation.page52
dc.rights.note未授權
dc.date.accepted2012-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved