Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧
dc.contributor.authorYi-An Shihen
dc.contributor.author施怡安zh_TW
dc.date.accessioned2021-06-07T17:54:04Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation1. Reya, T. and H. Clevers, Wnt signalling in stem cells and cancer. Nature, 2005. 434(7035): p. 843-50.
2. Hall, P.A., et al., Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci, 1994. 107 ( Pt 12): p. 3569-77.
3. Fontaine, R.N., et al., Liver and intestinal fatty acid binding proteins in control and TGF beta 1 gene targeted deficient mice. Mol. Cell. Biochem., 1996. 159(2): p. 149-153.
4. Garcia, M.A., N. Yang, and P.M. Quinton, Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest, 2009. 119(9): p. 2613-22.
5. Heyman, M., A.M. Crain-Denoyelle, and J.F. Desjeux, Endocytosis and processing of protein by isolated villus and crypt cells of the mouse small intestine. J Pediatr Gastroenterol Nutr, 1989. 9(2): p. 238-45.
6. Farquhar, M.G. and G.E. Palade, Junctional Complexes in Various Epithelia. J. Cell Biol, 1963. 17(2): p. 375-&.
7. Blikslager, A.T., et al., Restoration of barrier function in injured intestinal mucosa. Physiological Reviews, 2007. 87(2): p. 545-564.
8. Hollander, D., The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn's disease. Scand J Gastroenterol, 1992. 27(9): p. 721-6.
9. Diamond, G., et al., The roles of antimicrobial peptides in innate host defense. Curr Pharm Des, 2009. 15(21): p. 2377-92.
10. Ouellette, A.J., et al., Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun, 1994. 62(11): p. 5040-7.
11. Lehrer, R.I., A.K. Lichtenstein, and T. Ganz, Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol, 1993. 11: p. 105-28.
12. Frank, D.N. and N.R. Pace, Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol, 2008. 24(1): p. 4-10.
13. Frank, D.N., et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13780-5.
14. Bik, E.M., Composition and function of the human-associated microbiota. Nutrition Reviews, 2009. 67 Suppl 2: p. S164-71.
15. Kleessen, B., et al., Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol, 2002. 37(9): p. 1034-41.
16. Yu, L.C., et al., Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol, 2012. 3(1): p. 27-43.
17. Seksik, P., [Gut microbiota and IBD]. Gastroenterol Clin Biol, 2010. 34 Suppl 1: p. S44-51.
18. Marteau, P., Bacterial flora in inflammatory bowel disease. Dig Dis, 2009. 27 Suppl 1: p. 99-103.
19. Yang, L. and Z. Pei, Bacteria, inflammation, and colon cancer. World J Gastroenterol, 2006. 12(42): p. 6741-6.
20. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
21. Liu, C.H., et al., [Allergic airway response associated with the intestinal microflora disruption induced by antibiotic therapy]. Zhonghua Er Ke Za Zhi, 2007. 45(6): p. 450-4.
22. Sekirov, I., et al., Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun, 2008. 76(10): p. 4726-36.
23. Dethlefsen, L. and D.A. Relman, Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A, 2011. 108 Suppl 1: p. 4554-61.
24. Antonopoulos, D.A., et al., Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun, 2009. 77(6): p. 2367-75.
25. Hill, D.A., et al., Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol, 2010. 3(2): p. 148-58.
26. Toleman, M.A., et al., Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 2002. 50(5): p. 673-9.
27. Bhatia, R. and J.P. Narain, The growing challenge of antimicrobial resistance in the South-East Asia Region--are we losing the battle? Indian J Med Res, 2010. 132: p. 482-6.
28. Kotilainen, P., et al., Elimination of epidemic methicillin-resistant Staphylococcus aureus from a university hospital and district institutions, Finland. Emerg Infect Dis, 2003. 9(2): p. 169-75.
29. Tenover, F.C., et al., Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother, 2004. 48(1): p. 275-80.
30. Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep, 2002. 51(26): p. 565-7.
31. Endimiani, A., et al., In Vitro Activity of Fosfomycin against bla(KPC)-Containing Klebsiella pneumoniae Isolates, Including Those Nonsusceptible to Tigecycline and/or Colistin. Antimicrob. Agents Chemother., 2010. 54(1): p. 526-529.
32. Seema, K., et al., Dissemination of the New Delhi metallo-beta-lactamase-1 (NDM-1) among Enterobacteriaceae in a tertiary referral hospital in north India. J. Antimicrob. Chemother. , 2011. 66(7): p. 1646-1647.
33. Kumarasamy, K.K., et al., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lacent Infect Dis, 2010. 10(9): p. 597-602.
34. Poirel, L., et al., Emergence of Metallo-beta-Lactamase NDM-1-Producing Multidrug-Resistant Escherichia coli in Australia. Antimicrob. Agents Chemother., 2010. 54(11): p. 4914-4916.
35. Raghunath, D., New metallo beta-lactamase NDM-1. Indian J Med Res, 2010. 132(5): p. 478-481.
36. Nordmann, P., G. Cuzon, and T. Naas, The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lacent Infect Dis, 2009. 9(4): p. 228-236.
37. Perez, F., et al., Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother, 2011. 55(6): p. 2585-9.
38. Brandl, K., et al., Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature, 2008. 455(7214): p. 804-7.
39. Kinnebrew, M.A., et al., Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis, 2010. 201(4): p. 534-43.
40. Ubeda, C., et al., Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest, 2010. 120(12): p. 4332-41.
41. Barman, M., et al., Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect and Immun, 2008. 76(3): p. 907-915.
42. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-1920.
43. Amann, R.I., et al., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol, 1990. 56(6): p. 1919-25.
44. Rakoff-Nahoum, S., et al., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 2004. 118(2): p. 229-241.
45. Leatham, M.P., et al., Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E-coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine. Infect Immun, 2009. 77(7): p. 2876-2886.
46. Jankowska, A., et al., Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed Biotechnol, 2008.
47. Ubeda, C., et al., Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest, 2010. 120(12): p. 4332-4341.
48. Wells, C.L., et al., Role of Intestinal Anaerobic-Bacteria in Colonization Resistance. European Journal of Clinical Microbiol Infect Dis, 1988. 7(1): p. 107-113.
49. Wells, C.L., et al., Role of Anaerobic Flora in the Translocation of Aerobic and Facultatively Anaerobic Intestinal Bacteria. Infect Immun, 1987. 55(11): p. 2689-2694.
50. Snel, J., et al., Interactions between gut-associated lymphoid tissue and colonization levels of indigenous, segmented, filamentous bacteria in the small intestine of mice. Can J Microbiol, 1998. 44(12): p. 1177-1182.
51. Talham, G.L., et al., Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun, 1999. 67(4): p. 1992-2000.
52. Jiang, H.Q., N.A. Bos, and J.J. Cebra, Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infect Immun, 2001. 69(6): p. 3611-3617.
53. Croswell, A., et al., Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric Salmonella Infection. Infect Immun, 2009. 77(7): p. 2741-2753.
54. Leatham, M.P., et al., Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun, 2009. 77(7): p. 2876-86.
55. Gustafsson, B.E., The Physiological Importance of the Colonic Microflora. Scand J Gastroentero, 1982. 17: p. 117-131.
56. Wostmann, B.S., The germfree animal in nutritional studies. Annu Rev Nutr, 1981. 1: p. 257-79.
57. O'Hara, A.M. and F. Shanahan, The gut flora as a forgotten organ. Embo Reports, 2006. 7(7): p. 688-693.
58. Abad, C.L. and N. Safdar, The Role of Lactobacillus Probiotics in the Treatment or Prevention of Urogenital Infections - A Systematic Review. J Chemother, 2009. 21(3): p. 243-252.
59. Lin, Y.P., et al., Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis, 2008. 14(8): p. 1068-1083.
60. Lupp, C., et al., Host-mediated inflammation disrupts the intestinal microbiota and promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe, 2007. 2(2): p. 119-129.
61. Stecher, B., et al., Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. Plos Biol, 2007. 5(10): p. 2177-2189.
62. Lawley, T.D., et al., Antibiotic Treatment of Clostridium difficile Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts. Infect Immun, 2009. 77(9): p. 3661-3669.
63. Chowdhury, T.T., et al., Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influences the response of chondrocytes cultured in agarose constructs to IL-1beta and dynamic compression. Inflamm Res, 2008. 57(7): p. 306-13.
64. Malago, J.J., J.F. Koninkx, and J.E. van Dijk, The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperon, 2002. 7(2): p. 191-9.
65. Cowan, K.J. and K.B. Storey, Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol, 2003. 206(Pt 7): p. 1107-15.
66. Muza-Moons, M.M., E.E. Schneeberger, and G.A. Hecht, Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol, 2004. 6(8): p. 783-793.
67. Shifflett, D.E., et al., Enteropathogenic E-coli disrupts tight junction barrier function and structure in vivo. Lab Invest, 2005. 85(10): p. 1308-1324.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15867-
dc.description.abstract對beta-內酰胺有抗藥性的超級細菌,例如擁有新德里金屬beta-內酰胺酶(NDM)-1的超級細菌,對公眾健康有極大的威脅。腸道內的共生菌叢促進腸道屏障功能的穩固,並且與外來病菌競爭。而目前已知道抗生素會擾亂腸道共生菌叢。 目的:了解由抗生素造成的腸道菌叢擾亂,是否會促進超級細菌在腸道內生長和轉移。 方法: BALB/c小鼠給予正常飲水或是抗生素飲水七天,抗生素水去除之後,每隻小鼠灌食109CFU抗氨芐青黴素的大腸桿菌進行感染,在感染後的第0, 1, 3, 7, 和14天進行犧牲。利用蘇木紫-伊紅染色分析腸道的結構,並計數在腸道、脾臟、肝臟的細菌數量。被腸道上皮細胞內吞的細菌數量,則由慶大黴素耐藥檢測分離出來。利用螢光原位雜交,了解細菌入侵到黏膜層的情形。結果: 在第0天,抗生素組的腸道菌叢數量比正常飲水組的低。抗氨芐青黴素的細菌在正常飲水組的腸道中,每個時間點都沒有生長的現象。相反地,抗生素組的小鼠腸道中,在感染後第1, 3天都有抗氨芐青黴素的細菌出現在空腸、盲腸和結腸。抗氨芐青黴素的大腸桿菌在第7和14天被從腸道清除。此外,抗生素組小鼠在感染後第1天,出現盲腸腫脹並且有組織充血及白血球浸潤造成的水腫現象。另外,感染後第三天有細菌入侵空腸腺窩,空腸和結腸也有細菌被腸道上皮細胞內吞的情形。感染後第1和3天,有細菌在脾臟和肝臟轉移的現象。 結論: 正常的腸道菌叢具有屏障功能,可保護腸道不受抗藥性細菌感染。腸道菌叢受到干擾則會促進抗藥性細菌之定殖,並造成腸道共生菌和超級細菌都會體內的散布。zh_TW
dc.description.abstractSuperbugs that are resistant to beta-lactams antibiotics, such as those with New Delhi metallo-beta-lactamase (NDM)-1, pose major threats to public health. Enteric commensal microflora is involved in mucosal barrier fortification and pathogen competition. Antibiotics are known to disrupt intestinal flora. Aim: The aim is to evaluate whether antibiotic-induced intestinal dysbiosis may promote enteric colonization and translocation of superbug. Methods: BALB/c mice were drinking normal water (NW) or antibiotic water (AW) for 7 days. Ampicillin-resistant (Amp-r) E. coli BL21 (109 CFU) was administered by oral gavage after antibiotic withdrawal. Animals were sacrificed at 0, 1, 3, 7 and 14 days after inoculation. The structure of intestine was determined by H&E staining. Bacterial colony forming units in intestine, liver and spleen were assessed. The amount of intracellular bacteria in purified enterocytes was determined using a gentamicin resistance assay. Bacterial invasion to mucosa was determined by fluorescent in situ hybridization. Results: The enteric bacterial counts were reduced in AW mice compared to NW groups on day 0. After inoculation of Amp-r E.coli, no sign of bacterial colonization and translocation was seen in NW mice throughout all time points. In contrast, AW mice showed Amp-r E. coli in the jejunum, cecum and colon after inoculation for 1 and 3 days. Clearance of Amp-r E. coli was associated with recovery of commensal bacterial numbers after 7 and 14 days. Moreover, cecal flatulence and tissue edema associated with hyperemia and leukocyte infiltraton were observed in AW mice on day 1 post-infection. Furthermore, bacterial invasion to jejunal crypts, bacterial endocytosis in jejunal and colonic enterocytes, and bacterial translocation to liver and spleen were observed on day 1 and 3 post-infection in AW mice. Conclusions: The normal commensals served as a barrier to protect the intestine from antibiotic-resistant bacterial colonization. Enteric dysbiosis predisposes antibiotic-resistant bacteria to colonize, leading to systemic dissemination of both commensals and superbug.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:54:04Z (GMT). No. of bitstreams: 1
ntu-101-R99441003-1.pdf: 2908367 bytes, checksum: 9c878e04230c7ca16c48c3d7c51b3022 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝................................................................................................................................I
中文摘要.......................................................................................................................II
英文摘要......................................................................................................................Ⅲ
中英文縮寫名詞對照................................................................................................. .V
一、前言.......................................................................................1
1.腸道組織結構.............................................................................................................1
1.1小腸絨毛結構..................................................................................................1
2.腸道生理功能.............................................................................................................2
2.1物理性屏障......................................................................................................2
2.2化學性屏障......................................................................................................3
2.3免疫性屏障......................................................................................................3
3.腸腔內常生細菌.........................................................................................................4
4.抗生素造成常生菌相失衡.........................................................................................5
5.超級細菌的演進史.....................................................................................................6
6. 實驗目的...................................................................................................................8
二、材料與方法..........................................................................9
1. 實驗動物................................................................................................................9
2. 實驗用細菌............................................................................................................9
2.1含與不含氨芐青黴素的Luria-Bertani培養基瓊脂平板 (LB agar plate) 和培養液 (LB broth) 製備.............................................................................................9
2.1.1 氨芐青黴素儲存液 (Ampicillin stock) 的製備..............................9
2.1.2 LB培養液(LB broth)的製備..............................................................9
2.1.3 LB培養基瓊脂平板(LB agar plate)的製備.......................................10
2.2大腸桿菌生長曲線(growth curve)製作方式.................................................10
2.3餵食小鼠之細菌製備方法............................................................................11
3. 實驗動物分組......................................................................................................11
3.1正常水組 (Normal Water, NW) 飲用水配法..............................................11
3.2抗生素水組(Antibiotic Water, AW)飲用水配法...........................................11
4. 實驗動物感染流程..............................................................................................12
5. 腸道細菌數目變化分析......................................................................................12
5.1腸段總細菌量 (total bacteria) 量分析.........................................................12
5.2細菌轉移數量的分析 (bacteria translocation).............................................12
5.3腸道上皮細胞內吞細菌(endocytosed bacteria in enterocytes)分析........13
6. 組織固定、切片及染色......................................................................................14
6.1石蠟包埋檢體的製備作組織染色(固定液為4%三聚甲醛).................14
6.2石蠟包埋檢體的製備作螢光原位雜交實驗(固定液為Carnoy's Solution)
6.3 冷凍切片包埋檢體的製備作緊密連結螢光染色.......................................15
6.4 蘇木紫-伊紅染色(Haematoxylin and Eosin Staining)............................15
6.5 螢光原位雜交(Fluorescence in situ hybridization, FISH)......................16
6.6緊密連結免疫螢光染色 (Tissue immunofluorescence for ZO-1) .........16
7. 西方轉漬法 (Western blotting)........................................................................17
7.1 黏膜層蛋白質萃取.......................................................................................17
7.2 蛋白質定量...................................................................................................18
7.3蛋白質電泳....................................................................................................18
7.4蛋白質分析....................................................................................................18
8.腸道屏障功能分析................................................................................................20
8.1腸道組織離子通透性(ion permeability)分析..........................................20
8.2腸道組織大分子通透性(macromolecular permeability)分析.................21
三、實驗結果............................................................................22
1. Amp-r E.coli之生長曲線...................................................................................22
2. 抗生素處理與Amp-r E.coli感染對BALB/c小鼠腸道生理的影響................22
2.1小鼠腹腔外觀與消化道外觀變化................................................................22
2.2 腸道組織外觀結構的變化...........................................................................23
3. 腸段總細菌量(total bacteria number)的變化.............................................23
4. 腸道細菌在組織中分布情形..............................................................................24
5. 腸道上皮細胞內吞細菌量(endocytosed bacteria in enterocytes)..............24
6. 細菌轉移至肝臟及脾臟以及血液 (bacteria translocation) 的情形..............25
7. 腸道組織緊密連結ZO-1 和occludin 結構變化.............................................26
8. 小鼠空腸、盲腸及結腸的通透性變化..............................................................26
9. 抗生素水組MAPKs (p38、Erk1/2、JNK) 和I-kappa-B-alpha磷酸化程度的變化......27
四、討論....................................................................................28
五、圖表....................................................................................33
六、參考文獻...........................................................................57
表目錄
表1、腸道共生菌叢的功能.........................................................................................33
表2、正常水組與抗生素水組小鼠在day 0腸道常氧總細菌量的比較...................34
表3、正常水組與抗生素水組小鼠在day 0腸道厭氧總細菌量的比較...................35
圖目錄
圖1、腸道組織結構...................................................................................................36
圖2、腸道腺窩-絨毛軸..............................................................................................37
圖3、Ampicillin resistant E.coli (Amp-r E.coli) 之質體基因圖...........................38
圖4、Amp-r E.coli生長曲線中活菌數量與分光光度計讀數之關係....................39
圖5、正常水組 (Normal water, NW) 和抗生素水組 (antibiotic water, AW)小鼠在灌食Amp-r E.coli之後,腹腔內以及腸道的外觀變化......................................40
圖6-1、空腸組織外觀結構的變化..............................................................................41
圖6-2、盲腸組織外觀結構的變化..............................................................................42
圖6-3、結腸組織外觀結構的變化..............................................................................43
圖7、腸段需氧菌總量(total aerobic bacteria)的變化.......................................44
圖8、腸段厭氧菌總量(total anaerobic bacteria)的變化....................................45
圖9-1、螢光原位雜交分析細菌和E.coli在空腸組織內分佈的情形......................46
圖9-2、螢光原位雜交分析細菌和E.coli在盲腸組織內分佈的情形.....................47
圖9-3、螢光原位雜交分析細菌和E.coli在結腸組織內分佈的情形......................48
圖10、腸道上皮細胞內吞細菌(endocytosed bacteria in enterocytes)變化.........49
圖11、細菌轉移數量的變化 .....................................................................................50
圖12-1、空腸組織緊密連結ZO-1結構變化..............................................................51
圖12-2、盲腸組織緊密連結ZO-1結構變化..............................................................52
圖12-3、結腸組織緊密連結ZO-1結構變化..............................................................53
圖13、抗生素水組腸道黏膜組織中occludin之表現................................................54
圖14、小鼠腸道電生理值和通透性的變化...............................................................55
圖15、抗生素水組小鼠空腸與結腸在MAPKs (p38、ERK、JNK) 和Ikappka B alpha磷酸化程度的變化..............................................................................................................56
dc.language.isozh-TW
dc.subject上皮屏障功能zh_TW
dc.subject抗生素zh_TW
dc.subject超級細菌zh_TW
dc.subject腸道菌叢擾亂zh_TW
dc.subject定殖zh_TW
dc.subject入侵zh_TW
dc.subjectantibioticen
dc.subjectepithelial barrier functionen
dc.subjectinvasionen
dc.subjectcolonizationen
dc.subjectdysbiosisen
dc.subjectsuperbugen
dc.title抗生素引起之共生菌相失衡促使超級細菌在小鼠腸道定殖和入侵zh_TW
dc.titleAntibiotic-induced enteric commensal dysbiosis favours superbug colonization and bacterial invasion in miceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張上淳,倪衍玄,盧俊良,賈景山
dc.subject.keyword抗生素,超級細菌,腸道菌叢擾亂,定殖,入侵,上皮屏障功能,zh_TW
dc.subject.keywordantibiotic,superbug,dysbiosis,colonization,invasion,epithelial barrier function,en
dc.relation.page61
dc.rights.note未授權
dc.date.accepted2012-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved