Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周子賓(Tze-Bin Chou)
dc.contributor.authorYu-Ching Linen
dc.contributor.author林于敬zh_TW
dc.date.accessioned2021-06-07T17:53:16Z-
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citationAnderson KV, Nusslein-Volhard C (1984) Information for the dorsal--ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311: 223-227.
Alatortsev, V.E. (2006). [New genes coding for vitelline membrane proteins in Drosophila]. Mol Biol (Mosk) 40, 375-377.
Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128: 87-94
Bai, J., Hartwig, J.H., and Perrimon, N. (2007). SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. Dev Cell 13, 828-842.
Barlowe, C., Orci, L., Yeung, T., Hosobuchi, M., Hamamoto, S., Salama, N., Rexach, M.F., Ravazzola, M., Amherdt, M., and Schekman, R. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907.
Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J, Palcy S, Chevet E, Lafreniere-Roula M, Solari R, Thomas DY, Rowley A, Bergeron JJ (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276: 5152-5165
Bellaiche, Y., The, I., and Perrimon, N. (1998). Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85-88.
Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14: 2919-2937
Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124: 2623-2632
Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131: 1927-1938
Bornemann, D.J., Park, S., Phin, S., and Warrior, R. (2008). A translational block to HSPG synthesis permits BMP signaling in the early Drosophila embryo. Development 135, 1039-1047.
Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development.
Genes Dev 11: 3286-3305
Chang, C.W. (2007). Drosophila Golgi protein, Rotini, regulates glycoaminoglycan chains polymerases in the biogenesis of Heparan Sulfate Proteoglycans. National Taiwan University Master Thesis.
Chang, S.C. (2011). The Approach of Drosophila GOLPH3, Rotini, in Modulating Dorsal-Ventral Axis Formation. National Taiwan University Master Thesis.
Chang, Y. Y. (2002) Heparan sulfate proteoglycans modulate Hedgehog maintenance in Drosophila wing discs. Master Thesis. National Taiwan University. Taiwan.
Chasan R, Anderson KV (1989) The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391-400
Chou, T.B., Noll, E., and Perrimon, N. (1993). Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359-1369.
Chou, T.B., and Perrimon, N. (1992). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-653.
Chou, T.B., and Perrimon, N. (1996). The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673-1679.
Cockcroft S, Taylor JA, Judah JD (1985) Subcellular localisation of inositol lipid kinases in rat liver. Biochim Biophys Acta 845: 163-170
D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449: 62-67
D'Angelo G, Vicinanza M, De Matteis MA (2008a) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20: 360-370
D'Angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. J Cell Sci 121: 1955-1963
De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6: 487-492
DeLotto R (2001) Gastrulation defective, a complement factor C2/B-like protease, interprets a ventral prepattern in Drosophila. EMBO Rep 2: 721-726 DeLotto R, Spierer P (1986) A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature 323: 688-692
DeLotto R, Spierer P (1986) A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature 323: 688-692
DeLotto Y, DeLotto R (1998) Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 72:141-148
De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6: 487-492
Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, Kukhtina V, Haucke V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19: 1991-2002
Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139: 337-351
Dissing M, Giordano H, DeLotto R (2001) Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J 20: 2387-2393
Duman, J.G., and Forte, J.G. (2003). What is the role of SNARE proteins in membrane fusion? American journal of physiology Cell physiology 285, C237-249.
Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71: 435-471
Fairn GD, McMaster CR (2008) Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell Mol Life Sci 65: 228-236
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811
Futerman AH, Riezman H (2005) The ins and outs of sphingolipid synthesis. Trends Cell
Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393-404
Goto S, Taniguchi M, Muraoka M, Toyoda H, Sado Y, Kawakita M, Hayashi S (2001) UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat Cell Biol 3: 816-822
Habuchi H, Habuchi O, Kimata K (2004) Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconj J 21: 47-52
Hacker U, Lin X, Perrimon N (1997) The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124: 3565-3573
Haerry TE, Heslip TR, Marsh JL, O'Connor MB (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124: 3055-3064
Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV, Mattjus P,
Klumperman J, van Meer G, Sprong H (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179: 101-115
Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274: 34294-34300
Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422: 23-35
Han, C., Belenkaya, T.Y., Khodoun, M., Tauchi, M., and Lin, X. (2004). Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563-1575.
Han JH, Lee SH, Tan YQ, LeMosy EK, Hashimoto C (2000) Gastrulation defective is a serine protease involved in activating the receptor toll to polarize the Drosophila embryo. Proc Natl Acad Sci U S A 97: 9093-9097
Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803-809
Hashimoto C, Kim DR, Weiss LA, Miller JW, Morisato D (2003) Spatial regulation of developmental signaling by a serpin. Dev Cell 5: 945-950
Hohlfeld, R., and Wekerle, H. (2004). Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A 101 Suppl 2, 14599-14606.
Hong CC, Hashimoto C (1995) An unusual mosaic protein with a protease domain, encoded by the nudel gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell 82: 785-794
Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691.
Imler JL, Hoffmann JA (2001) Toll receptors in innate immunity. Trends Cell Biol 11:304-311
Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology 153, 163-168.
Izumikawa T, Egusa N, Taniguchi F, Sugahara K, Kitagawa H (2006) Heparan sulfate polymerization in Drosophila. J Biol Chem 281: 1929-1934
James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436.
Jullien D, Crozatier M, Kas E (1997) cDNA sequence and expression pattern of the Drosophila melanogaster PAPS synthetase gene: a new salivary gland marker. Mech Dev 68: 179-186
Kim BT, Kitagawa H, Tamura Ji J, Kusche-Gullberg M, Lindahl U, Sugahara K (2002) Demonstration of a novel gene DEXT3 of Drosophila melanogaster as the essential N-acetylglucosamine transferase in the heparan sulfate biosynthesis: chain initiation and elongation. J Biol Chem 277: 13659-13665
Konrad KD, Goralski TJ, Mahowald AP, Marsh JL (1998) The gastrulation defective gene of Drosophila melanogaster is a member of the serine protease superfamily. Proc Natl Acad Sci U S A 95: 6819-6824
Konsolaki, M., and Schupbach, T. (1998). windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum. Genes Dev 12, 120-131.
Krem MM, Di Cera E (2002) Evolution of enzyme cascades from embryonic Development 126: 3715-3723
Kristen U, Lockhausen J (1983) Estimation of Golgi membrane flow rates in ovary glands of aptenia cordifolia using cytochalasin B. Eur J Cell Biol 29: 262-267
Lee, M.C., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20, 87-123.
Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9: 99-111
LeMosy, E.K., Hong, C.C., and Hashimoto, C. (1999). Signal transduction by a protease cascade. Trends Cell Biol 9, 102-107.
LeMosy EK, Kemler D, Hashimoto C (1998) Role of Nudel protease activation in triggering dorsoventral polarization of the Drosophila embryo. Development 125:4045-4053
LeMosy EK, Leclerc CL, Hashimoto C (2000) Biochemical defects of mutant nudel alleles causing early developmental arrest or dorsalization of the Drosophila embryo. Genetics 154: 247-257
LeMosy EK, Tan YQ, Hashimoto C (2001) Activation of a protease cascade involved in patterning the Drosophila embryo. Proc Natl Acad Sci U S A 98: 5055-5060 Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci U S A 102: 4936-4942
Levine TP, Munro S (2002) Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695-704
Li J, Hagner-McWhirter A, Kjellen L, Palgi J, Jalkanen M, Lindahl U (1997) Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5-epimerase from bovine lung. J Biol Chem 272: 28158-28163
Ligoxygakis P, Roth S, Reichhart JM (2003) A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr Biol 13: 2097-2102
Lin X, Buff EM, Perrimon N, Michelson AM (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126: 3715-3723
Lin X, Perrimon N (2002) Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconj J 19: 363-368
Luders, F., Segawa, H., Stein, D., Selva, E.M., Perrimon, N., Turco, S.J., and Hacker, U. (2003a). Slalom encodes an adenosine 3'-phosphate 5'-phosphosulfate transporter essential for development in Drosophila. EMBO J 22, 3635-3644.
Luders, F., Segawa, H., Stein, D., Selva, E.M., Perrimon, N., Turco, S.J., and Hacker, U. (2003b). slalom encodes an adenosine 3 '-phosphate 5 '-phosphosulfate transporter essential for development in Drosophila. Embo Journal 22, 3635-3644.
Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304: 1755-1759
Luschnig S, Moussian B, Krauss J, Desjeux I, Perkovic J, Nusslein-Volhard C (2004) An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 167: 325-342
Lyle S, Stanczak J, Ng K, Schwartz NB (1994) Rat chondrosarcoma ATP sulfurylase and adenosine 5'-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry 33: 5920-5925
Markstein M, Zinzen R, Markstein P, Yee KP, Erives A, Stathopoulos A, Levine M (2004) A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131: 2387-2394
Miller, E.A., Beilharz, T.H., Malkus, P.N., Lee, M.C., Hamamoto, S., Orci, L., and Schekman, R. (2003). Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497-509.
Mintseris, J., Obar, R.A., Celniker, S., Gygi, S.P., VijayRaghavan, K., and Artavanis-Tsakonas, S. (2009). DPiM: the Drosophila Protein Interaction Mapping project.
Misra S, Hecht P, Maeda R, Anderson KV (1998) Positive and negative regulation of
Easter, a member of the serine protease family that controls dorsal-ventral patterning
in the Drosophila embryo. Development 125: 1261-1267
Mossessova, E., Bickford, L.C., and Goldberg, J. (2003). SNARE selectivity of the COPII coat. Cell 114, 483-495.
Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo--shaping and transducing a morphogen gradient. Curr Biol 15: R887-899
Murthy M, Schwarz TL (2004) The exocyst component Sec5 is required for membrane
traffic and polarity in the Drosophila ovary. Development 131: 377-388
Nakashima-Kamimura N, Asoh S, Ishibashi Y, Mukai Y, Shidara Y, Oda H, Munakata K, Goto Y, Ohta S (2005) MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118: 5357-5367
Neiman, P.E., Ruddell, A., Jasoni, C., Loring, G., Thomas, S.J., Brandvold, K.A., Lee, R., Burnside, J., and Delrow, J. (2001). Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc Natl Acad Sci U S A 98, 6378-6383.
Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75: 165-174
Neuman-Silberberg, F.S., and Schupbach, T. (1994). Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development 120, 2457-2463.
Ngo M, Ridgway ND (2009) Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 20:1388-1399
Nilson, L.A., and Schupbach, T. (1998). Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell 93, 253-262.
Nilson, L.A., and Schupbach, T. (1999). EGF receptor signaling in Drosophila oogenesis. Curr Top Dev Biol 44, 203-243.
Nusslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C (1980) A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283:474-476
Orellana A, Hirschberg CB, Wei Z, Swiedler SJ, Ishihara M (1994) Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase /N-sulfotransferase from a heparin-producing cell line. J Biol Chem 269:
2270-2276
Pai LM, Barcelo G, Schupbach T (2000) D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103: 51-61
Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S (2008) Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol Biol Cell 19: 3871-3884
Peri F, Technau M, Roth S (2002) Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 129:2965-2975
Perrimon, N. (1984). Clonal Analysis of Dominant Female-Sterile, Germline-Dependent Mutations in DROSOPHILA MELANOGASTER. Genetics 108, 927-939.
Perrimon, N., and Perkins, L.A. (1997). There must be 50 ways to rule the signal: the case of the Drosophila EGF receptor. Cell 89, 13-16.
Rorth, P. (1998). Gal4 in the Drosophila female germline. Mechanisms of development 78, 113-118.
Rose T, LeMosy EK, Cantwell AM, Banerjee-Roy D, Skeath JB, Di Cera E (2003) Three-dimensional models of proteases involved in patterning of the Drosophila Embryo. Crucial role of predicted cation binding sites. J Biol Chem 278: 11320-11330
Roth S, Schupbach T (1994) The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development 120: 2245-2257
Roth, S., Stein, D., and Nusslein-Volhard, C. (1989). A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59, 1189-1202.
Ruohola-Baker H, Grell E, Chou TB, Baker D, Jan LY, Jan YN (1993) Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell 73: 953-965
Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A (2011) PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev Cell 20: 47-59
Scherer, L.J., Harris, D.H., and Petri, W.H. (1988). Drosophila vitelline membrane genes contain a 114 base pair region of highly conserved coding sequence. Dev Biol 130, 786-788.
Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14: 523-534
Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27, 353-365.
Schupbach T (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49: 699-707
Schweitzer R, Howes R, Smith R, Shilo BZ, Freeman M (1995) Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature 376: 699-702
Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16: 2229-2234
Scott, K.L., Kabbarah, O., Liang, M.C., Ivanova, E., Anagnostou, V., Wu, J., Dhakal, S., Wu, M., Chen, S., Feinberg, T., et al. (2009). GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 459, 1085-1090.
Sen, J., Goltz, J.S., Konsolaki, M., Schupbach, T., and Stein, D. (2000). Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. Development 127, 5541-5550.
Sen, J., Goltz, J.S., Stevens, L., and Stein, D. (1998). Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471-481.
Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R.A., and Rothman, J.E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239-253.
Shmueli A, Cohen-Gazala O, Neuman-Silberberg FS (2002) Gurken, a TGF-alpha-like protein involved in axis determination in Drosophila, directly binds to the EGF-receptor homolog Egfr. Biochem Biophys Res Commun 291: 732-737
Smith C, Giordano H, DeLotto R (1994) Mutational analysis of the Drosophila snake protease: an essential role for domains within the proenzyme polypeptide chain. Genetics 136: 1355-1365
Smith CL, Giordano H, Schwartz M, DeLotto R (1995) Spatial regulation of Drosophila snake protease activity in the generation of dorsal-ventral polarity. Development 121: 4127-4135
Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17: 511-524
Song, H. H. (2001) A novel putative Golgi gene, rotini, is required for the production and transportation of Drosophila Hedgehog. Master Thesis. National Taiwan University. Taiwan.
Song, M., Ramaswamy, S., Ramachandran, S., Flowers, L.C., Horowitz, I.R., Rock, J.A., and Parthasarathy, S. (2001). Angiogenic role for glycodelin in tumorigenesis. Proc Natl Acad Sci U S A 98, 9265-9270.
Song, S.Y. (2001). A novel putative Golgi gene, rotini, is required for the production and transportation of Drosopila Hedgehog. National Taiwan University Master Thesis.
Tu, L., Tai, W.C., Chen, L., and Banfield, D.K. (2008). Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321, 404-407.
Stein D, Nusslein-Volhard C (1992) Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68: 429-440
Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol 10: 293-300
Stroud RM, Kossiakoff AA, Chambers JL (1977) Mechanisms of zymogen activation. Annu Rev Biophys Bioeng 6: 177-193
Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci U S A 107: 8225-8230
Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131: 73-82
The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4: 633-639
Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F (1988) Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7: 2175-2183
Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321: 404-407
Turcotte CL, Hashimoto C (2002) Evidence for a glycosaminoglycan on the nudel protein important for dorsoventral patterning of the drosophila embryo. Dev Dyn 224: 51-57
Van Buskirk C, Schupbach T (1999) Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol 9: 1-4
Vieira OV, Gaus K, Verkade P, Fullekrug J, Vaz WL, Simons K (2006) FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc Natl Acad Sci U S A 103: 18556-18561
Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1: 523-525
Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL (2007) PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18: 2646-2655
Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114: 299-310
Wasserman, J.D., and Freeman, M. (1998). An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 95, 355-364.
Anderson KV, Nusslein-Volhard C (1984) Information for the dorsal--ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311: 223-227
Arlaud GJ, Volanakis JE, Thielens NM, Narayana SV, Rossi V, Xu Y (1998) The atypical serine proteases of the complement system. Adv Immunol 69: 249-307
Baeg GH, Lin X, Khare N, Baumgartner S, Perrimon N (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128: 87-94
Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J, Palcy S, Chevet E, Lafreniere-Roula M, Solari R, Thomas DY, Rowley A, Bergeron JJ (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276: 5152-5165
Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14: 2919-2937
Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124: 2623-2632
Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131: 1927-1938
Bornemann DJ, Park S, Phin S, Warrior R (2008) A translational block to HSPG synthesis permits BMP signaling in the early Drosophila embryo. Development 135: 1039-1047
Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415
Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11: 3286-3305
Chang AJ, Morisato D (2002) Regulation of Easter activity is required for shaping the Dorsal gradient in the Drosophila embryo. Development 129: 5635-5645
Chang, C. W. (2002) Drosophila Golgi protein, Rotini, regulates glycosaminoglycan chains polymerases in the biogenesis of Heparan sulfate proteoglycans. Master Thesis. National Taiwan University. Taiwan.
Chang, Y. Y. (2002) Heparan sulfate proteoglycans modulate Hedgehog maintenance in Drosophila wing discs. Master Thesis. National Taiwan University. Taiwan.
Chasan R, Anderson KV (1989) The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391-400
Chou TB, Noll E, Perrimon N (1993) Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119: 1359-1369
Chou TB, Perrimon N (1992) Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131: 643-653
Chou TB, Perrimon N (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144: 1673-1679
Cockcroft S, Taylor JA, Judah JD (1985) Subcellular localisation of inositol lipid kinases in rat liver. Biochim Biophys Acta 845: 163-170
D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449: 62-67
D'Angelo G, Vicinanza M, De Matteis MA (2008a) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20: 360-370
D'Angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. J Cell Sci 121: 1955-1963
De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6: 487-492
DeLotto R (2001) Gastrulation defective, a complement factor C2/B-like protease, interprets a ventral prepattern in Drosophila. EMBO Rep 2: 721-726
DeLotto R, Spierer P (1986) A gene required for the specification of dorsal-ventral pattern in Drosophila appears to encode a serine protease. Nature 323: 688-692
DeLotto Y, DeLotto R (1998) Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 72: 141-148
De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6: 487-492
Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, Kukhtina V, Haucke V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19: 1991-2002
Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, Fuchs GJ, Meerloo T, Farquhar MG, Zhou H, Field SJ (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139: 337-351
Dissing M, Giordano H, DeLotto R (2001) Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J 20: 2387-2393
Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71: 435-471
Fairn GD, McMaster CR (2008) Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling. Cell Mol Life Sci 65: 228-236
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811
Futerman AH, Riezman H (2005) The ins and outs of sphingolipid synthesis. Trends Cell Biol 15: 312-318
Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393-404
Goto S, Taniguchi M, Muraoka M, Toyoda H, Sado Y, Kawakita M, Hayashi S (2001) UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat Cell Biol 3: 816-822
Habuchi H, Habuchi O, Ki
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15837-
dc.description.abstract果蠅胚胎發育過程中,背腹軸(dorsal-ventral polarity)的形成主要由一系列絲胺酸蛋白酶(serine proteases)的連鎖反應調控,在胚胎腹面可以活化Toll接受體(receptor)的配體(ligand)。然而,早在蛋腹部發育時, Pipe硫基轉移酶(sulfotransferase)則調控了這一系列絲胺酸蛋白酶的活化。在功能上而言,Pipe調控的受質硫化,在發育中背腹軸的形成扮演著很重要的角色。
Rotini(Rti)是人類GOLPH3蛋白的同源物,先前研究顯示Rti蛋白參與在多醣蛋白(HSPGs;Heparan Sulfate Proteoglycans) 合成多醣鏈(GAG;Glycoamino-
glycans)之生成當中。此外,當果蠅生殖細胞(germ-line cells)發生Rti缺失時,造成胚胎扭曲及Dorsal蛋白不正常分布,這些都指向Rti參與在背腹軸形成的過程當中。本論文主要目的為,詳細了解Rti在背腹軸形成過程中所扮演的角色。
本論文先排除了Rti藉由調控多醣蛋白HSPGs的機制去影響背腹軸的形成。此外,在果蠅卵巢濾泡細胞(follicle cells)裡,Rti和Pipe兩者的分佈有部分重疊。在果蠅S2細胞中,被證實Rti會和Pipe有交互作用。這些結果顯示,Rti與Pipe是參與在背腹軸形成過程中兩個直接作用的成員。
正常情況下,Pipe和cis-Golgi標記有50.3%面積重疊。在統計分析上,當Rti表現量上升時,Pipe和cis-Golgi標記重疊部分顯著上升(58.5%),而當Rti表現量下降時,Pipe和cis-Golgi標記重疊部分顯著下降(35.8%)。在遺傳實驗中,證實Rti作用於Pipe上游,這和Rti去調控Pipe分布的關係相符合。這些資料顯示,Rti有能力去影響Pipe在高基氏體的座落分布。
根據這些結果推論,Rti是一個參與在背腹軸形成過程中的新成員,藉由調控Pipe在高基氏體的座落分布。之後,將利用外被蛋白I(COPI;coat protein complex I)或外被蛋白II(COPII)的突變,去觀察Rti是否參與在高基氏體的正向運輸或逆向運輸去調控Pipe的座落。
zh_TW
dc.description.abstractThe dorsal-ventral (DV) polarity of the Drosophila embryo is controlled by the serine protease cascade, which generates the activated ligand for Toll receptor on the ventral site of the embryo. Pipe sulfotransferase, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of the serine proteolytic cascade. Functionally, Pipe-mediated sulfation provides a spatial cue for dorsoventral axis formation in the developing egg chamber.
Previous studies have shown that Rotini (Rti), a Drosophila homologe of human GOLPH3 protein, is required for the synthesis of heparan sulfate proteoglycans (HSPGs) glycosaminoglycan (GAG) chains. In addition, we have found that Rti also participates in dorovental axis formation, since rti loss-of-function in germ line exhibits a twisted embryonic phenotype and abnormal distribution of Dorsal protein. This thesis is aimed to understand how Rti plays the role in DV axis determination.
Here, we showed that Rti influences DV axis through a mechanism not responsible for the synthesis of HSPGs. Moreover, we observed that Rti is partially colocalized with Pipe in Drosophila ovarian follicle cells and coimmunoprecipitates with Pipe from Drosophila S2 cells. These results suggest that Rti and Pipe are the two interacting components in DV determination.
In addition, we observed 50.3% of Pipe-cis-Golgi marker colocalization area in wild-type follicle cells. In a statistically significant manner, the percentage of Pipe-cis-Golgi marker colocalization area is significantly increased (58.5%) in rti overexpression and is significantly decreased (35.8%) in rti knockdown. Genetically, Rti acts upstream of Pipe, which is consistent with its role in influening the distribution of Pipe. These results show that Rti is capable to affect the subcellular localization of Pipe in the Golgi.
Based in these finding, we propose that Rti is a new factor involved in DV axis formation by affecting the subcellular localization of Pipe. In the future, we will use the mutants of COPI (coat protein complex I), mediating intra-Golgi and Golgi to ER vesicle trafficking, and COPII (coat protein complex II), mediating ER to Golgi vesicle trafficking, to examine whether Rti participates in the forward or retrograde trafficking of Pipe in the Golgi.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:53:16Z (GMT). No. of bitstreams: 1
ntu-101-R99b43030-1.pdf: 8444294 bytes, checksum: 474a4be42337e06716bba90ae82f1db6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
List of tables xii
List of figures xiii
Abbreviations xv
Introduction 1
I. Drosophila oogenesis 1
II. The dorsoventral axis formation in Drosophila embryonic development 3
1. The dorsal follicle cell fates are determined by the EGF receptor (Egfr) 4
2. An extracellular proteolytic cascade transmits the ventralising signal 5
3. The cytoplasmic events downsream of the Toll receptor 14
4. The generation of distinct cell types along the dorsoventral axis 15
III. Pipe sulfotransferase, a key determinant of embryonic DV polarity 16
1. Windbeutel (Wind; Wbl) is required for the function and localization of Pipe 18
2. Pipe activity in the ovary and the embryonic salivary gland does not require heparin sulfate glycosaminoglycans (HSPGs) 19
3. The vitelline membrane-like (VML) undergoes Pipe-dependent sulfation and affects DV pattern in hypomorphic pipe mutant background 20
IV. Heparan Sulfate Proteoglycans (HSPGs) modulation in Hedgehog (Hh) signaling pathway 21
1. Morphogens establish the positional information to regulate the development events 21
2. The graded signals establish extracellular morphogens 23
3. HSPGs regulate the distribution and signaling of morphogens 23
4. HSPGs is crucial for regulating morphogen behaviors 27
V. Rotini (Rti), the homolog of human GOLPH3 in Drosophila, involved in HSPGs biogenesis 28
1. Identification of rotini 28
2. Rti has no any conserved domains 28
3. Rti homologues function in Golgi trafficking 28
4. Rti regulates the retrograde trafficking of EXTs in HSPGs synthesis. 32
VI. The role of Rotini in the dorsal-ventral (DV) axis formation 34
1. rti GLC embryo displays weak dorsalized phenotype 34
2. Rti affects the graded nuclear location of Dorsal 35
3. Rti does not affect the distribution of Gurken 35
4. The linear relationship exists between Rti and Pipe 36
VII. The mechanism of versicle-mediated transport in the Golgi apparatus 37
VIII. The aim of this thesis 39
1. Fly stock 41
2. The autosomal FLP-DFS technique 41
3. Heat shock treatment 41
4. GAL4-UAS system 41
5. Generation of recombinant mutant clones in somatic tissue 21
6. Drosophila S2 cells maintenance 21
7. Transient transfection of S2 cell 21
8. Immunoprecipitation assay 21
9. Yeast two-hybrid assay 22
10. Cloning constructs 23
11. Fluorescence antibody staining of ovary 23
12. Western blotting analysis 24
13. Membrane stripping 24
14. Cuticle preparation 24
I. Rti does not act through HSPGs to affect dorsoventral axis formation in early embryos. 26
1. Ttv, Botv and Sotv are not detected during Drosophila oogenesis 26
2. The absence of Ttv, Botv and Sotv during oogenesis is further confirmed in ttv, botv and sotv mutant clone respectively. 26
3. EXT antibodies can recognize EXT proteins when EXTs are overexpressed in follicle cells. 27
II. In genetics, Rti has a genetic interaction with Pipe and acts upstream of Pipe. 27
1. Loss of VML expression increases the percentage of early-dead embryos in rti GLG 27
2. In genetics, Pipe is epistatic to Rti in ovarian follicle cells. 28
III. Rti is partially colocalized with Pipe in Drosophila ovarian follicle cells and interacts with Pipe in Drosophila S2 cells. 28
1. Rti is partially colocalized with Pipe in Drosophila ovarian follicle cells 29
2. Rti interacts with Pipe in Drosophila S2 cells with co-immunoprecipitation assay 29
3. Rti does not interact with Pipe in yeast two-hybrid assay 30
IV. Rti is capable to influence the subcellular localization of Pipe in the Golgi apparatus. 31
1. The subcellular localization of Pipe in the Golgi apparatus is altered in variant protein level of rti. 31
2. In statistical analysis, the value of colocalization percentage in rti overexpression or knockdown comparing to wild type is significantly different. 31
3. Pipe is not localizaed in ER when rti is knocked down 32
V. The mislocalized ratio of Pipe in rti knockdown condition is not affected when COPI or COPII is heterozygous mutated. 32
I. Rti affects the dorsoventral axis formation in a HSPGs-independent manner. 35
ttv and other GAG synthesis mutants show no defects in DV patterming. 35
ttv mutant in germ line does not affect the Dorsal nuclear uptake in early embryos. 35
GAG modifications are absent when DV axis is established. 36
Ttv, Botv and Sotv are not expressed during Drosophila oogenesis. 36
II. Rti derived from the follicle cells might participate in the DV axis formation by influencing the localization of Pipe in the Golgi. 36
Rti is expressed in both germ line and follicle cells during oogenesis. 36
The phenotype of dorsalized embryo is caused by rti GLC. 36
III. Rti might mediate the retrograde trafficking of Pipe in the Golgi complex. 37
IV. Future prospects 39
Reference 43
Table 76
Figure 78
dc.language.isoen
dc.subject硫基轉移酵素zh_TW
dc.subject高基氏體蛋白質GOLPH3zh_TW
dc.subject多醣蛋白HSPGzh_TW
dc.subjectGAG醣鏈聚合酵素EXTzh_TW
dc.subject背腹軸zh_TW
dc.subjectGOLPH3en
dc.subjectSulfotransferasesen
dc.subjectDorsoventral (DV) axisen
dc.subjectExostosins (EXT)en
dc.subjectHeparan Sulfate Proteoglycans (HSPG)en
dc.title果蠅GOLPH3(Rotini)影響Pipe在高基氏體的座落分布zh_TW
dc.titleDrosophila GOLPH3, Rotini, Affects the Subcellular Localization of Pipe in the Golgi Complexen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦,溫進德,董桂書
dc.subject.keyword高基氏體蛋白質GOLPH3,多醣蛋白HSPG,GAG醣鏈聚合酵素EXT,背腹軸,硫基轉移酵素,zh_TW
dc.subject.keywordGOLPH3,Heparan Sulfate Proteoglycans (HSPG),Exostosins (EXT),Dorsoventral (DV) axis,Sulfotransferases,en
dc.relation.page149
dc.rights.note未授權
dc.date.accepted2012-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved