Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉志文(Chih-Wen Liu)
dc.contributor.authorYi-Ting Chouen
dc.contributor.author周一婷zh_TW
dc.date.accessioned2021-06-07T17:53:10Z-
dc.date.copyright2012-12-06
dc.date.issued2012
dc.date.submitted2012-08-19
dc.identifier.citation[1] R. A. Sarker and C. S. Newton, Optimization Modelling: A Practical Approach, CRC Press, 2007.
[2] H. Seifi and M. S. Sepasian, Electric Power System Planning: Issues, Algorithms, and Solutions, Springer, 2011
[3] K. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, IEEE Press & Wiley-Interscience, 2008.
[4] J. Zhu, Optimization of Power System Operation, IEEE Press Series on Power Engineering, 2009.
[5] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Springer, 2003.
[6] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, Wiley, 2001.
[7] D. Ashlock, Evolutionary Computation for Modeling and Optimization, Springer, 2006.
[8] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999.
[9] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley, 2005.
[10] C. Carlsson and R. Fullér, Fuzzy Reasoning in Decision Making and Optimization, Springer-Verlag, 2002.
[11] R. E. Steuer, Multiple Criteria Optimization: Theory, Computations, and Application, John Wiley & Sons: New York, 1986.
[12] Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies, Springer, 2004.
[13] L. H. Fink, K. L. Liou, and C. C. Liu, “From generic restoration actions to specific restoration strategies,” IEEE Trans. Power Systems, vol. 10, no. 2, pp. 745-751, May 1995.
[14] N. A. Fountas, N. D. Hatziargyriou, C. Orfanogiannis, and A. Tasoulis, “Interactive long-term simulation for power system restoration planning,” IEEE Trans. Power Systems, vol. 12, no. 1, pp. 61-68, Feb. 1997.
[15] M. M. Adibi and D. Scheurer, “System operations challenges–Issues and problems in power system restoration,” IEEE Trans. Power Systems, vol. 3, no. 1, pp.123-126, Feb. 1988.
[16] M. M. Adibi and L. H. Fink, “Special considerations in power system restoration,” IEEE Trans. Power Systems, vol. 7, no. 4, pp. 1419-1427, 1992.
[17] M. M. Adibi, R. W. Alexander, and B. Avramovic, “Overvoltage control during restoration,” IEEE Trans. Power Systems, vol. 7, no. 4, pp. 1464-1470, 1992.
[18] P.G. Boliaris, J.M. Prousalidis, N.D. Hatziargyriou, and B.C. Papadias, “Simulation of long transmission lines energization for black start studies,” in Proc. 1994 Mediterranean Electrotechnical Conference, vol. 3, pp. 1093-1096.
[19] M. M. Adibi and L. H. Fink, “Power system restoration planning,” IEEE Trans. Power Systems, vol. 9, no. 1, pp. 869-875, 1994.
[20] F. P. de Mello and J. C. Westcott, “Steam Plant Startup and Control in System Restoration,” IEEE Trans. Power Systems, vol. 9, no. 1, pp. 93-101, 1994.
[21] M. M. Adibi, et al., “Power system restoration — A task force report,” IEEE Trans. Power Systems, vol. 2, no. 2, pp. 271-277, May 1987.
[22] T. Sakaguchi and K. Matsumoto, “Development of a knowledge based system for power system restoration,” IEEE Trans. Power Systems, vol. 102, no. 2, pp. 320–329, 1983.
[23] D. S. Kirschen and T. L. Volkmann, “Guiding a power system restoration with an expert system,” IEEE Trans. Power Systems, vol. 6, no. 2, pp. 558-565, 1991.
[24] M. M. Adibi, R. J. Kafka, and D. P. Milanicz, “Expert system requirements for power system restoration,” IEEE Trans. Power Systems, vol. 9, no. 3, pp. 1592-1598, 1994.
[25] C. Wang and Y. Liu, “Group intelligent decision support system for power system skeleton restoration,” in Proc.20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 126-129, 2008.
[26] Y. Hou, C. C. Liu, K. Sun, P. Zheng, S. Liu, and D. Mizumura, “Computation of milestones for decision support during system restoration,” IEEE Trans. Power Systems, vol. 26, no. 3, pp. 1399-1409, 2011.
[27] C. C. Skiścim and B. L. Golden, “Optimization by simulated annealing: a preliminary computational study for the TSP,” in Proc. 15th Winter Simulation Conference (WSC '83), pp. 523-535, 1983.
[28] B. Liu, et al, 'Integrating knowledge-based approach, case-based reasoning and Dijkstra algorithm for routing finding,' in Proc. 10th IEEE Conference on Artificial Intelligence for Applications (CAIA-94), pp. 149-155, 1994.
[29] D. Cvijovic and J. Klinowski, “Taboo search — An approach to the multiple minima problem,” Science, vol. 267, no. 5198, pp. 664-666, 1995.
[30] Y. Liu and X. Gu, “Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 1267-1274, 2007.
[31] G. Lambet-Torres, H. G. Martins, M. P. Coutinho, C. P. Salomon, and L. S. Filgueiras, “Particle swarm optimization applied to restoration of electrical energy distribution systems,” in Proc. 2008 International Symposium on Intelligence Computation and Applications (ISICA2008), pp. 228–238.
[32] A. S. Bretas and A. G. Phadke, “Artificial neural networks in power system restoration,” IEEE Trans. Power Delivery, vol. 18, no. 4, pp. 1181-1186, Oct. 2003.
[33] J. P. Paul, J. T. Leost and J. M. Tesseron, “Survey of the secondary voltage control in France: Present realization and investigations”, IEEE Trans. Power Systems, vol. 2, no. 2, pp. 505-511, May 1987.
[34] S. Corsi, P. Marannino, N. Losignore, G. Moreschini, and G. Piccini, “Coordination between the reactive power scheduling function and the hierarchical voltage control of the EHV ENEL system,” IEEE Trans. Power Systems, vol. 10, no. 2, pp. 686-694, May 1995.
[35] J. S. Thorp, M. Ilic-Spong, and G.M. Varghese, 'Optimal secondary voltage-var control using pilot point information structure,' in Proc. 23rd Conference on Decision and Control, pp. 462-465, 1984.
[36] P. Lagonotte, J. C. Sabonnadiere, J.Y. Leost, and J. P. Paul. “Structural analysis of the electrical system: Application to secondary voltage control in France,” IEEE Trans. Power Systems, vol.4, no.2, pp.479-486, 1989.
[37] B. Milosevic, M. Begovic, “Voltage stability protection and control using a wide area network of phasor measurements,” IEEE Trans. Power Systems, vol. 18, no. 1, 2003.
[38] A. Leirbukt, K. Uhlen, M. T. Palsson, J. O. Gjerde, K. Vu, and O. Kirkeluten, “Voltage monitoring and control for enhanced utilization of power grids,” in Proc. 2004 IEEE PES Power Systems Conference and Exposition, vol. 1, pp. 342-347.
[39] M. Ilic and Z. Liu, “A new method for selecting best locations of PMUs for robust automatic voltage control (AVC) and automatic flow control (AFC)”, in Proc. 2010 IEEE Power and Energy Society General Meeting, pp.1-8.
[40] H. Vu, P. Pruvot, C. Launnay, and Y. Harmand, “An improved voltage control on large-scale power system,” IEEE Trans. Power Systems, vol. 11, no. 3, pp. 1295-1303, Aug. 1996.
[41] B. Marinescu and H. Bourles, “Robust predictive control for the flexible coordinated secondary voltage control of large-scale power systems,” IEEE Trans. Power Systems, vol. 14, pp. 1262–1268, Nov. 1999.
[42] H. Bourles and B. Marinescu, “A novel approach to coordinated secondary level voltage control of large-scale power systems,” in Proc. 12th PSCC, pp. 995-1001, 1996.
[43] J. S. Thorp, M. Ilic-Spong, and M. Varghese, “An optimal secondary voltage-var control technique,” Automatica, vol. 22, no. 2, pp. 217-222,1986.
[44] K. Vu, M. M. Begovic, D. Novosel, and M. M. Saha, “Use of Local Measurements to Estimate Voltage stability Margin,” IEEE Trans. Power System, vol. 14, no.3, pp. 1029-1035, Aug. 1999.
[45] M. Moghavvemi and F. M. Omar “Technique for contingency monitoring and voltage collapse prediction,” IEE Proc.-Gener. Transm. Distrib., vol. 145, no. 6, pp. 634-640, Dec. 1998.
[46] I. Smon, G. Verbic, and F. Gubina, “Local voltage stability index using Tellegen’s theorem,” IEEE Trans. Power System, vol. 21, no. 3, pp.1267-1275. Aug., 2006.
[47] J. Zhao, Y. Yang, and Z. Gao, “A review on online voltage stability monitoring indices and methods based on local phasor measurements,” in Proc. 17th Power Systems Computation Conference, 2011.
[48] Investigation Report of 729 Event of Taiwan Power Company, Department of Economic Affairs, Taiwan Power Company, Tech. Rep., 1999 (in Chinese).
[49] L. L. Tsai, “Struggling in power dispatching during the devastating 921 earthquake in Taiwan,” Monthly Journal of Taipower’s Engineering, vol. 618, pp. 54–66, Feb. 2000 (in Chinese).
[50] Transmission System Planning Criteria for Taiwan Power System, Taiwan Power Company, 2008 (in Chinese).
[51] System Operation Criteria for Taiwan Power System, Taiwan Power Company, 2000 (in Chinese).
[52] Report of Assessment on Black Start Capacity in Taiwan Power System, Department of System Operations, Taiwan Power Company, Tech. Rep., 2008 (in Chinese).
[53] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997.
[54] Coordinated Voltage Control in Transmission Network, CIGRE Task Force C4.602, Tech. Rep., 2007.
[55] C. Roos, T. Terlaky, and J. P. Vial, Theory and Algorithms for Linear Optimization: An Interior Point Approach, John Wiley & Sons, 1997.
[56] C. Roos, T. Terlaky, and J. P. Vial, Interior Point Methods for Linear Optimization, Springer, 2006.
[57] A. Antoniou and W. S. Lu, Practical Optimization: Algorithms and Engineering Applications, Springer, 2007.
[58] A. Conejo and M. Aguilar, “Secondary voltage control: nonlinear selection of pilot buses, design of an optimal control law, and simulation results,” IEE Proc.-Gener. Transm. Distrib., vol. 145, no. 1, pp. 77-81, Jan 1998.
[59] S. Corsi, M. Pozzi, C. Sabelli, and A. Serrani, “The coordinated automatic voltage control of the italian transmission grid — Part I : reasons of the choice and overview of the consolidated hierarchical system,” vol. 19, no. 4, pp. 1723-1732, 2004.
[60] C. W. Liu, et al., “Initiatives of Advanced Application of Wide-Area Measurement Sys-tem (WAMS),” National Science Council, R.O.C., Tech. Rep., NSC 100-3113-P-002-012-, 2012 (In Chinese).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15833-
dc.description.abstract本論文旨在探討最佳化技術於全黑啟動(Black Start)規劃與二次電壓控制 (Secondary Voltage Control, SVC)之應用。在全黑啟動規劃方面,本論文提出一全黑啟動決策支援系統(Black Start Decision Supporting System, BSS)以輸出最佳全黑啟動路徑與加壓模式,其目標函數包含輸電線物理特性與加壓過程模擬結果之考量以期提升全黑啟動之效率與安全性;最佳化技術則結合蟻拓最佳化(Ant Colony Optimization, ACO)與圖論(Graph Theory)之演算法以具備適應性(Adaptivity)與可觀測性(Observability)。在二次電壓控制方面,本論文提出一適應性二次電壓控制系統(Adaptive Secondary Voltage Control System, ASVCS)以校正系統電壓與維持系統電壓穩定度(Voltage Stability),其數學模型以快速解耦合負載潮流(Fast Decoupled Load flow)之方程式為基礎,並考量在系統限制條件下之電壓變動最小化與系統穩定性維持,經轉換構成一組大型線性規劃(Linear Programming, LP)問題;最佳化運算包含運用導引匯流排(Pilot Bus)同步相量量測器(Phasor Measurement Units, PMUs)之量測資訊以估測系統狀態以及計算控制訊號。此系統結合凸規劃(Convex Programming)開源(Open Source)求解工具以及自行開發之數學模型轉換與獨立求解程式以求解最佳控制訊號作為調配發電機輸出虛功之依據。此外,針對導引匯流排最佳設置地點之選擇,本論文亦提出一有效之規畫策略以增進二次電壓控制之效果。透過應用於台灣電網與IEEE標準系統之測試驗證,本論文所提出之全黑啟動決策支援系統與適應性二次電壓控制系統之最佳化技術確實具有合理性且可行性。zh_TW
dc.description.abstractThe dissertation focuses on the applications of optimization techniques in the black start planning and the secondary voltage control (SVC), respectively. For black start planning, a black start decision supporting system (BSS) has been developed in this study to generate optimal black start energizing paths and modes. The proposed objective function aims at enhancing the security and efficiency of black start, while taking into account the physical characteristics of transmission lines and the simulation results. The optimization approach integrates Graph Theory and Ant Colony optimization (ACO) to meet the requirements of adaptivity and observability. As for SVC, an adaptive secondary voltage control system (ASVCS) has been developed in this study for voltage regulation and voltage stability maintenance. The mathematical model of ASVCS is constructed based on the decoupled load flow equation and transformed into a set of large-scale linear programming (LP) problems considering the minimization of voltage variation and the preservation of system stableness under the system constraints. The optimization process includes the system state estimation using the measured data of the synchronized phasor measurement units (PMUs) at pilot buses and the computation of control actions, which utilizes a self-developed program for mathematical model transformation and a standalone program of interior-point methods modified from open source convex programming solvers. In addition, to enhance the performance of ASVCS, an effective strategy for the selection of pilot buses is also proposed in this dissertation. Through the application tests on Taiwan Power System (TPS) and IEEE standard systems, the validity and feasibility of the optimization approaches of BSS and ASVCS have been both justified.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:53:10Z (GMT). No. of bitstreams: 1
ntu-101-D97921012-1.pdf: 8048898 bytes, checksum: 54798e2bcd42750eb97ff0d10ae69dce (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 I
Abstract II
Contents III
List of Figures V
List of Tables VII
Chapter 1 Introduction 1
1.1. Motivations 1
1.2. Contribution 2
1.3. Organization of the Dissertation 2
Chapter 2 Literature Review 3
2.1. Problem Definition and Modeling 3
2.1.1 Problem Definition 3
2.1.2 Problem Modeling 4
2.2. Optimization Techniques Classification 5
2.3. Black Start Relating Studies 12
2.4. Secondary Voltage Control Relating Studies 13
Chapter 3 Optimization of Black Start Decision Supporting System (BSS) 15
3.1. Black Start Path Planning 16
3.1.1 Objective Function 16
3.1.2 Constraints 21
3.1.3 Optimization Methodology 22
3.2. Application Results 31
Chapter 4 Optimization of Secondary Voltage Control (SVC) 40
4.1. PMU-based ASVCS 41
4.1.1 Objective Function 37
4.1.2 Constraints 41
4.1.3 Optimization Methodology 42
4.2. Optimization of Pilot Buses Selection 53
4.3. Simulation Results 57
Chapter 5 Conclusions and Future Works 71
5.1. Conclusion 71
5.2. Future Works 72
References 73
 
dc.language.isoen
dc.subject台電系統zh_TW
dc.subject全黑啟動zh_TW
dc.subject決策支援系統zh_TW
dc.subject最佳化zh_TW
dc.subject二次電壓控制zh_TW
dc.subjectTaiwan power systemen
dc.subjectoptimizationen
dc.subjectblack starten
dc.subjectdecision support systemen
dc.subjectsecondary voltage controlen
dc.title最佳化技術於全黑啟動決策支援系統與二次電壓控制之應用zh_TW
dc.titleApplications of Optimization Techniques in Black Start Decision Supporting System (BSS) and Secondary
Voltage Control (SVC)
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee許源浴(Yuan-Yih Hsu),盧展南(Chan-Nan Lu),張文恭(Gary W. Chang),黃世杰(Shyh-Jier Huang),陳朝順(Chao-Shun Chen)
dc.subject.keyword全黑啟動,決策支援系統,最佳化,二次電壓控制,台電系統,zh_TW
dc.subject.keywordblack start,decision support system,optimization,secondary voltage control,Taiwan power system,en
dc.relation.page79
dc.rights.note未授權
dc.date.accepted2012-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
7.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved