Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維
dc.contributor.authorGuan-Yu Zhuoen
dc.contributor.author卓冠宇zh_TW
dc.date.accessioned2021-06-07T17:52:29Z-
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation1. Erikson, A., et al., Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. Journal of Biomedical Optics, 2007. 12(4): p. 044002-10.
2. Both, M., et al., Second harmonic imaging of intrinsic signals in muscle fibers in situ. Journal of Biomedical Optics, 2004. 9(5): p. 882-892.
3. Plotnikov, S.V., et al., Characterization of the Myosin-Based Source for Second-Harmonic Generation from Muscle Sarcomeres. Biophysical Journal, 2006. 90(2): p. 693-703.
4. Chu, S.-W., et al., Selective imaging in second-harmonic-generation microscopy by polarization manipulation. Applied Physics Letters, 2007. 91(10): p. 103903-103903-3.
5. Chu, S.-W., et al., Selective imaging in second-harmonic-generation microscopy with anisotropic radiation. Journal of Biomedical Optics, 2009. 14(1): p. 010504-3.
6. Chen, W.-L., et al., Second harmonic generation <equation>χ</equation> tensor microscopy for tissue imaging. Applied Physics Letters, 2009. 94(18): p. 183902-183902-3.
7. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): p. 2059-2062.
8. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): p. 2486-2489.
9. Clays, K., S. Van Elshocht, and A. Persoons, Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material. Opt. Lett., 2000. 25(18): p. 1391-1393.
10. Stoller, P., et al., Polarization-modulated second harmonic generation in collagen. Biophysical Journal, 2002. 82(6): p. 3330-3342.
11. Yasui, T., et al., Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light. Optical and Quantum Electronics, 2005. 37(13-15): p. 1397-1408.
12. Buleon, A., et al., Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 1998. 23(2): p. 85-112.
13. Waigh, T.A., et al., Analysis of the native structure of starch granules with X-ray microfocus diffraction. Macromolecules, 1997. 30(13): p. 3813-3820.
14. Barrow, C.J., et al., Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer's disease: Analysis of circular dichroism spectra. Journal of Molecular Biology, 1992. 225(4): p. 1075-1093.
15. Conway, K.A., et al., Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(2): p. 571-576.
16. Stephens, P.J., et al., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 1994. 98(45): p. 11623-11627.
17. Petralli-Mallow, T., et al., Circular dichroism spectroscopy at interfaces: a surface second harmonic generation study. The Journal of Physical Chemistry, 1993. 97(7): p. 1383-1388.
18. D.C, L., Recent advances in ZnO materials and devices. Materials Science and Engineering: B, 2001. 80(1–3): p. 383-387.
19. Chan, S.W., et al., Second harmonic generation in zinc oxide nanorods. Applied Physics B: Lasers and Optics, 2006. 84(1): p. 351-355.
20. Wang, Y., Local field effect in small semiconductor clusters and particles. The Journal of Physical Chemistry, 1991. 95(3): p. 1119-1124.
21. Hell, S.W. and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994. 19(11): p. 780-782.
22. Rittweger, E., et al., STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon, 2009. 3(3): p. 144-147.
23. Zhuang, X., Nano-imaging with STORM. Nat Photon, 2009. 3(7): p. 365-367.
24. Hess, S.T., T.P.K. Girirajan, and M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 2006. 91(11): p. 4258-4272.
25. Boyd, R.W., Nonlinear optics. 2008: Academic Press.
26. Oheim, M., et al., Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Advanced Drug Delivery Reviews, 2006. 58(7): p. 788-808.
27. Franken, P.A., et al., Generation of Optical Harmonics. Physical Review Letters, 1961. 7(4): p. 118-119.
28. Prasad, P.N., Introduction to Biophotonics. 2003: Wiley-Interscience.
29. Pavesi, L. and P.M. Fauchet, Biophotonics. Biological and medical physics, biomedical engineering. 2008, Berlin: Springer. xxii, 336 p.
30. Chu, S.-W., et al., Thickness dependence of optical second harmonic generation in collagen fibrils. Opt. Express, 2007. 15(19): p. 12005-12010.
31. Shen, Y.R., Surface Second Harmonic Generation: A New Technique for Surface Studies. Annual Review of Materials Science, 1986. 16(1): p. 69-86.
32. Shen, Y.R., Surface properties probed by second-harmonic and sum-frequency generation. Nature, 1989. 337(6207): p. 519-525.
33. Sanford, N.A. and J.A. Aust, Nonlinear optical characterization of LiNbO3. I. Theoretical analysis of Maker fringe patterns for x-cut wafers. J. Opt. Soc. Am. B, 1998. 15(12): p. 2885-2909.
34. Optical Second Harmonic Generation in Semiconductor Nanostructures. Physics Research International, 2012. 2012: p. 11.
35. Tiaho, F., G. Recher, and D. Rouede, Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Opt. Express, 2007. 15(19): p. 12286-12295.
36. Chu, S.-W., et al., Studies of chi(2)/chi(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Vol. 86. 2004. 3914-22.
37. Chu, S.W., et al., Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy. Journal of Microscopy, 2002. 208(3): p. 190-200.
38. Jiang, B.-Y. and S.-W. Chu. Trigonal Symmetry of Type I Collagen Probed by SHG Polarization Anisotropy. 2008: Optical Society of America.
39. Brasselet, S., Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv. Opt. Photon., 2011. 3(3): p. 205-271.
40. Chu, S.-W., et al., Studies of C(2)/C(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy. Biophysical journal, 2004. 86(6): p. 3914-3922.
41. Erikson, A., et al., Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. Journal of Biomedical Optics, 2007. 12(4): p. Artn 044002.
42. Tiaho, F., G. Recher, and D. Rouede, Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy. Optics Express, 2007. 15(19): p. 12286-12295.
43. Rikken, G. and E. Raupach, Enantioselective magnetochiral photochemistry. Nature, 2000. 405(6789): p. 932-935.
44. Bachilo, S.M., et al., Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002. 298(5602): p. 2361-2366.
45. Greenfield, N.J., Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 2006. 1(6): p. 2876-2890.
46. Uversky, V.N. and E.A. Permyakov, Methods in Protein Structure and Stability Analysis: Luinescence Spectroscopy and Circular Dichroism. 2006: Nova Biomedical Books, NY.
47. Burke, B.J., et al., Experimental confirmation of the importance of orientation in the anomalous chiral sensitivity of second harmonic generation. Journal of the American Chemical Society, 2003. 125(30): p. 9111-9115.
48. Belardini, A., et al., Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Physical Review Letters, 2011. 107(25): p. 257401.
49. Huttunen, M.J., et al., Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers. Opt. Mat. Express, 2011. 1(1): p. 46-56.
50. Gualtieri, E.J., L.M. Haupert, and G.J. Simpson, Interpreting nonlinear optics of biopolymer assemblies: Finding a hook. Chem. Phys. Lett., 2008. 465(4-6): p. 167-174.
51. Verbiest, T., et al., Strong enhancement of nonlinear optical properties through supramolecular chirality. Science, 1998. 282(5390): p. 913-915.
52. Campagnola, P.J., et al., Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues. Biophysical journal, 2002. 82(1): p. 493-508.
53. Zou, G., et al., Studying the chirality of polymerized 10,12-tricosadynoic acid LB films using SHG polarized angle dependence and SHG-CD method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 284–285(0): p. 424-429.
54. Wang, Y., Local Field-Effect in Small Semiconductor Clusters and Particles. J. Phys. Chem., 1991. 95: p. 1119.
55. Maki, J.J., et al., Linear and Nonlinear Optical Measurements of the Lorentz Local Field. Phys. Rev. Lett., 1991. 67: p. 972.
56. Chan, S.W., et al., Second harmonic generation in zinc oxide nanorods. Appl. Phys. B, 2006. 84: p. 351.
57. Hilborn, R.C., Einstein Coefficients, Cross-Sections, F Values, Dipole-Moments, and All That. Am. J. Phys., 1982. 50: p. 982.
58. Meulenkamp, E.A., Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B, 1998. 102: p. 5566.
59. Chen, C.-W., et al., Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl. Phys. Lett., 2006. 88: p. 241905.
60. Boyd, R.W. and B.R. Masters, Nonlinear Optics, Third Edition. J. Biomed. Opt., 2009. 14: p. 029902.
61. Maker, P.D., et al., Effects of Dispersion and Focusing on the Production of Optical Harmonics. Phys. Rev. Lett., 1962. 8: p. 21.
62. Jerphagnon, J. and S.K. Kurtz, Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals. J. Appl. Phys., 1970. 41: p. 1667.
63. Gehr, R.J. and A.V. Smith, Separated-beam nonphase-matched second-harmonic method of characterizing nonlinear optical crystals. J. Opt. Soc. Am. B, 1998. 15(8): p. 2298-2307.
64. Khoo, I.C., Liquid Crystals. 2007: Wiley-Interscience.
65. Janossy, I. and T. Kosa, Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals. Opt. Lett., 1992. 17(17): p. 1183-1185.
66. Janossy, I., Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals. Physical Review E, 1994. 49(4): p. 2957-2963.
67. Saad, B., et al., Photoexcited azo-dye induced torque in nematic liquid crystals. Optics Communications, 1998. 151(4–6): p. 235-240.
68. Cognard, J. and T.H. Phan, The Use of Azo Dyes in Guest-Host Displays. Molecular Crystals and Liquid Crystals, 1981. 68(1): p. 207-229.
69. Truong, T.V., L. Xu, and Y.R. Shen, Dynamics of the guest-host orientational interaction in dye-doped liquid-crystalline materials. Physical Review E, 2005. 72(5): p. 051709.
70. Szabados, L., I. Janossy, and T. Kosa, Laser-Induced Bulk Effects in Nematic Liquid Crystals Doped With Azo-Dyes. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 1998. 320(1): p. 239-248.
71. Yu, J.-Y., et al., A diffraction-limited scanning system providing broad spectral range for laser scanning microscopy. Review of Scientific Instruments, 2009. 80(11): p. 113704.
72. Gallant, D.J., B. Bouchet, and P.M. Baldwin, Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers, 1997. 32(3-4): p. 177-191.
73. Tang, H.J., T.H. Mitsunaga, and Y. Kawamura, Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 2006. 63(4): p. 555-560.
74. Zhuo, Z.-Y., et al., Second harmonic generation imaging – A new method for unraveling molecular information of starch. Journal of Structural Biology, 2010. 171(1): p. 88-94.
75. Guo, M., P. Diao, and S.M. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J. Solid. State. Chem., 2005. 178: p. 1864.
76. Jafari, A., H. Tajalli, and A. Ghanadzadeh, Enhanced optical nonlinearities in some dye-doped nematic liquid crystals. Laser Physics, 2006. 16(8): p. 1213-1217.
77. Kim, H.W., et al., Second harmonic generation and photorefractive effect in dye-doped liquid crystals. Japanese Journal of Applied Physics Part 2-Letters, 2001. 40(9ab): p. L952-L954.
78. Sacconi, L., D.A. Dombeck, and W.W. Webb, Overcoming photodamage in second-harmonic generation microscopy: Real-time optical recording of neuronal action potentials. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(9): p. 3124-3129.
79. Chu, S.W., et al., Studies of c(2)/c(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophysical Journal, 2004. 86(6): p. 3914-3922.
80. Yoshiki, K., et al., Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation: publisher's note (vol 32, pg 1680, 2007). Optics Letters, 2007. 32(16): p. 2465-2465.
81. Becchi, M., et al., Anomalous intensity dependence of optical reorientation in azo-dye-doped nematic liquid crystals. Physical Review E, 2004. 69(5): p. 051707.
82. Liao, C.-S., et al., Decrimping: The first stage of collagen thermal denaturation unraveled by in situ second-harmonic-generation imaging. Applied Physics Letters, 2011. 98(15): p. 153703-3.
83. Tzeng, Y.-Y., et al., Observation of spontaneous polarization misalignments in periodically poled crystals using second-harmonic generation microscopy. Opt. Express, 2011. 19(12): p. 11106-11113.
84. Stoller, P., et al., Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. Journal of Biomedical Optics, 2002. 7(2): p. 205-214.
85. Nadiarnykh, O., et al., Coherent and incoherent SHG in fibrillar cellulose matrices. Optics Express, 2007. 15(6): p. 3348-3360.
86. Chu, S.W., et al., Selective imaging in second-harmonic-generation microscopy by polarization manipulation. Applied Physics Letters, 2007. 91(10): p. Artn 103903.
87. Verbiest, T., et al., Optical Activity of Anisotropic Achiral Surfaces. Physical Review Letters, 1996. 77(8): p. 1456-1459.
88. Huttunen, M.J., et al., Absolute Probe of Surface Chirality Based on Focused Circularly Polarized Light. The Journal of Physical Chemistry Letters, 2010. 1(12): p. 1826-1829.
89. Valev, V.K., et al., The role of chiral local field enhancements below the resolution limit of Second Harmonic Generation microscopy. Opt. Express, 2012. 20(1): p. 256-264.
90. Balu, M., et al., Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. Journal of Biomedical Optics, 2009. 14(1).
91. Cox, G., N. Moreno, and J. Feijo, Second-harmonic imaging of plant polysaccharides. Journal of Biomedical Optics, 2005. 10(2): p. Artn 024013.
92. Zhuo, Z.Y., et al., Second harmonic generation imaging - A new method for unraveling molecular information of starch. J. Struct. Biol., 2010. 171(1): p. 88-94.
93. Kainuma, K. and D. French, Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymers, 1972. 11(11): p. 2241-2250.
94. Wu, H.C.H. and A. Sarko, Packing analysis of carbohydrates and polysaccharides .8. Double-helical molecular-structure of crystalline B-amylose. Carbohydrate Research, 1978. 61(MAR): p. 7-25.
95. Imberty, A., et al., Recent advances in knowledge of starch structure. Starch-Starke, 1991. 43(10): p. 375-384.
96. Waigh, T.A., et al., Analysis of the native structure of starch granules with small angle x-ray microfocus scattering. Biopolymers, 1999. 49(1): p. 91-105.
97. Eliasson, A.C., et al., On the Structure of Native Starch - an Analog to the Quartz Structure. Starch-Starke, 1987. 39(5): p. 147-152.
98. Coultate, T.P., Food : the chemistry of its components. RSC paperbacks. 2009, Cambridge: Royal Society of Chemistry.
99. Barsby, T.L., A.M. Donald, and P.J. Frazier, Starch : advances in structure and function. 2001, Cambridge, UK: Royal Society of Chemistry.
100. Das, M., S. Rana, and P. Sen, Second Harmonic Generation in Zno Nanorods. J. Nonlinear. Opt. Phys., 2010. 19: p. 445.
101. Fuh, A.Y.G., et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films. Opt. Lett., 2001. 26(22): p. 1767-1769.
102. Schadt, M., et al., Surface-Induced Parallel Alignment of Liquid-Crystals by Linearly Polymerized Photopolymers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1992. 31(7): p. 2155-2164.
103. Scharf, T., Polarized Light in Liquid Crystals And Polymers. 2007: Wiley-Interscience.
104. Smalyukh, I.I., S.V. Shiyanovskii, and O.D. Lavrentovich, Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy. Chemical Physics Letters, 2001. 336(1–2): p. 88-96.
105. Tzeng, Y.W., et al., Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser. Optics Express, 2009. 17(9): p. 7304-7309.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15803-
dc.description.abstract本論文匯集了偏極化二倍頻的相關應用,二倍頻是一光與物質交互作用的同調過程,其與分子的排列及結構對稱性具有高的靈敏度。這種經由偏振所產生的非線性光學效應具有方向的特性,提供了量化整齊排列的結構參數的可能性。於是產生了許多研究去探討如何調控入射的偏振狀態去分析樣本的結構,例如:研究具疾病的生物樣本在病理上的改變、確認樣本表面或交界面的分子旋性、及二倍頻在奈米材料中的轉換過程。以上的研究都與二倍頻對結構的專一性有很大的關係。因此,具偏振解析的二倍頻顯微鏡已逐漸形成對於生物及材料研究上有利的鑑別工具。關於偏極化二倍頻的應用,它已被用來經張量分析去診斷惡性的黑色素瘤的標地物,類似的方法也應用在求得心臟與肌肉組織的分子排列與非線性光學參數,除此之外,利用組織內部所發出的二倍頻訊號與偏振的相依性去分辨第一型膠原蛋白與肌肉纖維。這些工作促成我們對於偏極化二倍頻的研究以及有助於我們激發更多應用在偏振解析二倍頻顯微鏡的創新。
在我們的研究當中,我們專注於如何使用偏極化的二倍頻,並提供了四個例子去求得不同樣本從結構蛋白質到奈米材料間的分子資訊。章節2.3說明使用具偏振相依性的二倍頻影像去得到澱粉顆粒在三維空間中的分子指向及非線性光學參數。章節2.4說明在厚的生物組織中所觀察到的旋光效應,此方法受惠於二倍頻影像技術針對旋性分子具有高的訊號對比度以及光學切片的能力。章節2.5提供了氧化鋅奈米棒的尺寸效應的詳細解釋,此概念建構在勞倫茲場的效應。此外,Maker條紋技術證實了實驗數據與理論是吻合的。章節2.6致力於架設一具同調性的二倍頻奈米顯微鏡,經由偶氮染料的光致同素異構化反應使分子反轉,此過程具有重複性與飽和特性可作為光學切換去調控二倍頻訊號,連帶著液晶的排列方式也可以藉由此方法而顯現出來。
關鍵字:二倍頻、旋性、勞倫茲局部電場、液晶、光學奈米顯微術
zh_TW
dc.description.abstractThis thesis gathers related studies of the application on polarized SHG. Second harmonic generation (SHG) is a coherent process through light-matter interaction, which is highly sensitive to molecular orientation and structural symmetry. The vectorial nature of polarization-induced nonlinear optical effects provides the access for quantifying the structural factors in ordered structures. Thus it leads to a great number of studies about polarization manipulation on imposed optical field such as pathological change in diseased biomaterial, identification on molecular chirality of surface/interface, and SHG conversion in nanomaterial that are all involving the structural specificity in SHG. Therefore, polarization-resolved SHG microscopy (PSHM) has been evolved into a powerful characterization tool for biological research and material study. About the usage of polarized SHG, it has been exploited to serve as a diagnostic marker in malignant melanoma by χ(2) analysis [1]. Similar method is also allowed for deducing molecular orientation and optical nonlinearities of cardiac and skeletal muscle tissues [2, 3]. Moreover, quantitative discrimination between endogenous SHG sources by their polarization dependences on SHG are utilized to separate type-I collagen fibrils and muscle fibers [4-6]. The earlier works promote our studies for polarized SHG, and assist us to inspire more innovative ideas from PSHM.
Among our studies, we emphasize the application of polarized SHG and provide four examples to retrieve molecular information of different samples, ranging from structural proteins to nanomaterials. Section 2.3 describes the practical use of SHG polarization-dependence images to unravel three-dimensional (3D) molecular orientation and intrinsic optical nonlinearities in starch granules. Section 2.4 illustrates the observation of chiroptical effect in thick biotissues, which benefits from the contrast agent for SHG imaging to helical-typed molecules and its optical sectioning capability. Section 2.5 gives in-depth explanations to the size effect on ZnO nanorods (NRs) based on the concept of Lorentz local field. In addition, Maker fringe technique is introduced in verifying the experimental results with our theory. Section 2.6 is dedicated to the construction of a coherent SHG nanoscope. The reversible and saturable optical switch of molecular reorientation via photoisomerization of azo-dye is exploited to control SHG signal, and in turn reveals detailed orientation order of liquid crystal.
Key word: second harmonic generation, chirality, Lorentz local field, liquid crystal, optical nanoscopy
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:52:29Z (GMT). No. of bitstreams: 1
ntu-101-D96222013-1.pdf: 3720151 bytes, checksum: 004e2f2a6c700b061646c314771c7e59 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
PUBLICATION LIST
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 THEORY 8
2.1 Nonlinear optics and second harmonic generation (SHG) 8
2.2 Microscopic application 24
2.3 SHG polarization anisotropy 33
2.4 Chiral SHG 36
2.5 SHG of semiconductor nanoparticles 40
2.6 Superresolved SHG 45
CHAPTER 3 MATERIALS AND METHODS 53
CHAPTER 4 RESULTS 67
4.1 Deduction of molecular information in starch 67
4.2 SHG chiral images 72
4.3 Relationship between χ(2) and ZnO NR dimensions 74
4.4 Light-induced molecular reorientation for SHG nano-imaging 78
CHAPTER 5 DISCUSSIONS 84
5.1 Comparison of amylopectin with other SHG-active molecules 84
5.2 Analysis of chiroptical effect 85
5.3 Discussion on Lorentz local field effect 87
5.4 Discussion on molecular reorientation in a microscopic system 88
CHAPTER 6 CONCLUSIONS 92
FIGURE INDEX 95
TABLE INDEX 100
REFERENCE 101
dc.language.isoen
dc.title使用偏振解析二倍頻顯微術觀測奈米尺度下之分子訊息zh_TW
dc.titleObservation of Molecular Information at Nanometer Scale by Polarization Resolved-Second Harmonic Generation Microscopy (PSHM)en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳永芳,宋孔彬,邱爾德,高甫仁
dc.subject.keyword二倍頻,旋性,勞倫茲局部電場,液晶,光學奈米顯微術,zh_TW
dc.subject.keywordsecond harmonic generation,chirality,Lorentz local field,liquid crystal,optical nanoscopy,en
dc.relation.page105
dc.rights.note未授權
dc.date.accepted2012-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved