請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15736
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡哲明 | |
dc.contributor.author | Huei-Jiun Su | en |
dc.contributor.author | 蘇慧君 | zh_TW |
dc.date.accessioned | 2021-06-07T17:51:01Z | - |
dc.date.copyright | 2012-11-22 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-10-17 | |
dc.identifier.citation | Ackerman, C. M., Q. Yu, S. Kim, R. E. Paull, P. H. Moore, and R. Ming. 2008. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta 227:741-753.
Airoldi, C. A. and B. Davis. 2012. Gene duplication and the evolution of plant MADS-box transcription factors. Journal of Genetics and Genomics 39:157-165. Akashi, H. 1994. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927-935. Akuzawa, E. 1982. Balanophora in Wild flowers of Japan II (Y. Satake, J. Ohwi, S. Kitamura, S. Watari, and T. Tominari, eds.). Heibonsha, Tokyo. APG III. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161:105-121. Barbazuk, W. B., Y. Fu, and K. M. McGinnis. 2008. Genome-wide analyses of alternative splicing in plants: Opportunities and challenges. Genome Research 18:1381-1392. Barbrook, A. C., C. J. Howe, and S. Purton. 2006. Why are plastid genomes retained in non-photosynthetic organisms? Trends in Plant Science 11:101-108. Barkman, T. J., S. H. Lim, K. M. Salleh, and J. Nais. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world's largest flower. Proceedings of National Academy of Sciences, USA 101:787-792. Barkman, T. J., J. R. McNeal, S. H. Lim, G. Coat, H. B. Croom, N. D. Young, and C. W. DePamphilis. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology 7:248. Blazquez, M. A., L. N. Soowal, I. Lee, and D. Weigel. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835-3844. Borchsenius, F., and J. M. Olesen. 1990. The Amazonian root holoparasite Lophophytum mirabile (Balanophoraceae) and its pollinators and herbivores. Journal of Tropical Ecology 6:501-505. Bowman, J. L., D. R. Smyth, and E. M. Meyerowitz. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37-52. Britten, R. J. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393-1398. Brunner, I., S. Brodbeck, U. Buchler, and C. Sperisen. 2001. Molecular identification of fine roots of trees from the Alps: reliable and fast DNA extraction and PCR-RFLP analyses of plastid DNA. Molecular Ecology 10:2079-2087. Bungard, R. A. 2004. Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235-247. Chang, S., J. Puryear, and J. Chirney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11:113-116. Cho, Y., J. P. Mower, Y.-L. Qiu, and J. D. Palmer. 2004. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of National Academy of Sciences, USA 101:17741-17746. Cock, L., S. Holzapfel, D. King, and N. Singer. 2005. Dactylanthus taylorii recovery plan, 2004-14 Department of Conservation (NZ), Wellington. Coen, E. S., and E. M. Meyerowitz. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia Univ. Press, N. Y. Cronquist, A. 1988. The evolution and classification of flowering plants, 2nd edition. New York Botanical Garden, Bronx, N.Y., USA. Dahlgren, R. 1983. General aspects of angiosperm evolution and macrosystematics. Nordic Journal of Botany 3:119-149. Davis, C. C., W. R. Anderson, and K. J. Wurdack. 2005. Gene transfer from a parasitic flowering plant to a fern. Proceedings of The Royal Society B-Biological Sciences 272:2237-2242. de Queiroz, A., and J. Gatesy. 2007. The supermatrix approach to systematics. Trends in Ecology & Evolution 22:34-41. Delavault, P., V. Sakanyan, and P. Thalouarn. 1995. Divergent evolution of two plastid genes, rbcL and atpB, in a non-photosynthetic parasitic plant. Plant Molecular Biology 29:1071-1079. dePamphilis, C., and J. D. Palmer. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337-339. dePamphilis, C. W. 1995. Genes and genomes. Pages 177-205 in Parasitic plants (M. C. Press, and J. D. Graves, eds.). Chapman & Hall, London. dePamphilis, C. W., N. D. Young, and A. D. Wolfe. 1997. Evolution of plastid gene rps2 in a lineage of hemiparastistic and holoprasistic plants : many losses of photosynthesis and complex patterns of rate variation. Proceedings of National Academy of Sciences, USA 94:7367-7372. Der, J. P., and D. L. Nickrent. 2008. A molecular phylogeny of Santalaceae (Santalales). Systematic Botany 33:107-116. Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15. Eberwein, R., D. L. Nickrent, and A. Weber. 2009. Development and morphology of flowers and inflorescences in Balanophora papuana and B. elongata (Balanophoraceae). American Journal of Botany 96:1055-1067. Eckardt, N. A. 2006. Functional divergence of AP3 genes in the MAD world of flower development. Plant Cell 18:1779-1781. Ecroyd, C. E. 1996. The ecology of Dactylanthus taylorii and threats to its survival. New Zealand Journal of Ecology 20:81-100. Egea-Cortines, M., H. Saedler, and H. Sommer. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architeture in Antirrhinum majus. The EMBO Journal 18:5370-5379. Engler, A. 1912. A. Engler's Syllabus der Pflanzenfamilien : mit besonderer Berucksichtigung der Nutzpflanzen nebst einer Ubersicht uber die Florenreiche und Florengebiete der Erde. Verlag von Gebruder Borntraeger, Berlin. Fagerlind, F. 1945. Blute und Blutenstand der Gattung Balanophora. Boraniska Notiser:330-350. Fagerlind, F. 1948a. Bau und entwicklung der vegetativen organe von Balanophora. Kungl. Svenska Vetenskapsakademiens Handlingar 25:1-72. Fagerlind, F. 1948b. Beitrage zur Kenntnis der Gynaceummorphologie und Phylogenie der Santalales-Familien. Svensk Botanisk Tidskrift 42:195-229. Felsenstein, J. 1985. Confidence limits on phylogenies with a molecular clock. Systematic Zoology 34:152-161. Frank, D. A., A. W. Pontes, E. M. Maine, J. Caruana, R. Raina, S. Raina, and J. D. Fridley. 2010. Grassland root communities: species distributions and how they are linked to aboveground abundance. Ecology 91:3201-3209. Frohlich, M. W., and E. M. Meyerowitz. 1997. The search for flower homeotic gene homologs in basal angiosperms and Gnetales: a potential new source of data on the evolutionary origin of flowers. International Journal of Plant Sciences 158:S131-S142. Gaut, B. S., B. R. Morton, B. C. McCaig, and M. T. Clegg. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear Adh parallel rate differences at the plastid gene rbcL. Proceedings of National Academy of Sciences, USA 93:10274-10279. Georgiev, A. V., A. L. Lokasola, L. Nkanga, A. Lokondja, J. Nsala, J. Likenge, A. Ilanga-Bomanga, and J.-P. Likenge. 2010. New observations of the terrestrial holoparasite Chlamydophytum aphyllum Mildbr. and its consumption by bonobos at Kokolopori, Democratic Republic of Congo. African Journal of Ecology 48:849-852. Gerats, T., and M. Vandenbussche. 2005. A model system comparative for research: Petunia. Trends in Plant Science 10:251-256. Graur, D. 1985. Amino acid composition and the evolutionary rates of protein-coding genes. Journal of Molecular Evolution 22:53-62. Guisinger, M. M., J. N. V. Kuehl, J. L. Boore, and R. K. Jansen. 2008. Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proceedings of National Academy of Sciences, USA 105:18424-18429. Hansen, B. 1972. The genus Balanophora J. R. & G. Forster a taxonomic monogragh. Dansk Botanisk. Arkiv.:1-188. Hansen, B. 1976. Balanophoraceae. Flora Malesiana series I - Spermatophyta 7:783-805. Hansen, B. 1980. Balanophoraceae. Flora Neotropica 23:1-80. Hansen, B. 1982. The Balanophoraceae of the Pacific. Acta Phytotaxonomica et Geobotanica 18:92-102. Hansen, B. 1999. Balanophora species published 1971-1998, mostly from China and Japan. Nordic Journal of Botany 19:641-642. Harms, H. 1935. Reihen Santalales, Aristolochiales, Balanophorales. Geschichtliche Enwicklung der Ansichten uber die Umgrenzung der Reihen und ihre Zusammensetzung. Pages 1-4 in Naturlichen Planzenfamilien Bd.16 (A. Engler, and H. Harms, eds.). Wilhelm Engelman, Leipzig. Hatushima, S. 1971. A new noteworthy species of Balanophora from Kyushu. Journal of Geobotany 19:60-62. Hegnauer, R. 1964. Chemotaxonomie Der Pflanzen: Band 3: Dicotyledoneae: Acanthaceae Bis Cyrillaceae. Birkhauser Verlag. Heide-Jorgensen, H. S. 2008. Parasitic flowering plants. Brill, Leiden. Holzapfel, S. 2001. Studies of the New Zealand root-parasite Dactylanthus taylorii (Balanophoraceae). Englera 22:3-176. Hooker, J. D. 1856. On the structure and affinities of Balanophoraceae. Transections of Linnean Society London 22:1-68 plus 16 plates. Horikawa, Y. 1972. Atlas of the Japanese flora - an introduction to plant sociology of East Asia. Gakken Co., Tokyo, Japan. Horikawa, Y. 1976. Atlas of the Japanese flora II - an introduction to plant sociology of East Asia. Gakken Co., Tokyo, Japan. Hosokawa, A., M. Sumino, T. Nakamura, S. Yano, T. Sekine, N. Ruangrungsi, K. Watanabe, and F. Ikegami. 2004. A new lignan from Balanophora abbreviata and inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. Chemical & Pharmaceutical Bulletin 52:1265-1267. Hsiao, S.-C., J. D. Mauseth, and C.-I. Peng. 1995. Composite bundles, the host/parasite interface in the holoparasitic angiosperms Langsdorffia and Balanophora (Balanophoraceae). American journal of Botany 82: 81-91. Hu, J.-M., M. Lavin, M. F. Wojciechowski, and M. J. Sanderson. 2000. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae. American Journal of Botany 87:418-430. Huang, S., and J. Murata. 2003. Balanophoraceae. Flora of China 5: 272-276. Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. Hutchinson, J. 1973. The families of flowering plants arranged according to a new system based on their proable phylogeny, third edition. Oxford Irish, V. F. 2006. Duplication, diversification and comparative genetics of angiosperm MADS-box genes. Advance in Botanical Research 44: 129-161. Irwin, M. T., F. J.-L. Raharison, H. Rakotoarimanana, E. Razanadrakoto, E. Ranaivoson, J. Rakotofanala, and C. Randrianarimanana. 2007. Diademed sifakas (Propithecus diadema) use olfaction to forage for the inflorescences of subterranean parasitic plants (Balanophoraceae : Langsdorffia sp., and Cytinaceae : Cytinus sp.). American Journal of Primatology 69:471-476. Jaramillo, M. A., and E. M. Kramer. 2007. Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales. Molecular Phylogenetics and Evolution 44:598-609. Kawakita, A., and M. Kato. 2002. Floral biology and unique pollination system of root holoparasites Balanophora kuroiwai, and B. tobiracola (Balanophoraceae). American Journal of Botany 89:1164-1170. Kay, Q. O. N., and H. S. Daoud. 1981. Pigment distribution, light reflection and cell structure in petals. Botanical Journal of the Linnean Society 83:57-84. Kim, E., A. Goren, and G. Ast. 2008. Alternative splicing: current perspectives. Bioessays 30:38-47. Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29:170-179. Kramer, E. M., V. S. Di Stilio, and P. M. Schluter. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164:1-11. Kramer, E. M., R. L. Dorit, and V. F. Irish. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-783. Kramer, E. M., L. Holappa, B. Gould, M. A. Jaramillo, D. Setnikov, and P. M. Santiago. 2007. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell 19:750-766. Kramer, E. M., and V. F. Irish. 2000. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower Eudicots and basal angiosperms. International Journal of Plant Sciences 161:S29-S40. Kramer, E. M., M. A. Jaramillo, and V. S. Di Stilio. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011-1023. Kramer, E. M., H. J. Su, C. C. Wu, and J. M. Hu. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology 6:30. Kuijt, J. 1968. Mutual affinities of Santalalean families. Brittonia 20:136-147. Kuijt, J. 1969. Rafflesiaceae, Hydnoraceae, and Balanophoraceae. Pages 118-133 in The Biology of Parasitic Flowering Plants University of California Press. Kuijt, J., and W. X. Dong. 1990. Surface features of the leaves of Balanophoraceae - a family without stomata. Plant Systematics and Evolution 170:29-35. Kuwada, Y. 1928. An occurrence of restitution nuclei in the formation of embryosacs in Balanophora japonica. Botanical Magazine Tokyo 42:117-129. Lamb, R. S., and V. F. Irish. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of National Academy of Sciences, USA 100:6558-6563. Laroche, J., P. Li, L. Maggia, and J. Bousquet. 1997. Molecular evolution of angiosperm mitochondrial introns and exons. Proceedings of National Academy of Sciences, USA 94:5722-5727. Lemaire, B., S. Huysmans, E. Smets, and V. Merckx. 2010. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. Journal of Plant Research. Lenhard, M., A. Bohnert, G. Jurgens, and T. Laux. 2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805-814. Li, W. H., C. I. Wu, and C. C. Luo. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2:150-174. Lightfoot, D. J., K. M. Malone, J. N. Toimmis, and S. J. Orford. 2008. Evidence for alternative splicing of MADS-box transcripts om developing cotton fobre cells. Molecular Genetics and Genomics 279:75-85. Linder, C. R., L. A. Moore, and R. B. Jackson. 2000. A universal molecular method for identifying underground plant parts to species. Molecular Ecology 9:1549-1559. Litt, A. 2007. An evaluation of A-function: Evidence from the APETALA1 and APETALA2 gene lineages. International Journal of Plant Sciences 168:73-91. Litt, A., and V. F. Irish. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: Implications for the evolution of floral development. Genetics 165:821-833. Litt, A., and E. M. Kramer. 2010. The ABC model and the diversification of floral organ identity. Seminars in Cell & Developmental Biology 21:129-137. Luo, J., N. Yoshikawa, M. C. Hodson, and B. D. Hall. 2007. Duplication and paralog sorting of RPB2 and RPB1 genes in core eudicots. Molecular Phylogenetics and Evolution 44:850-862. Maddison, D. R., and W. P. Maddison. 2000. MacClade 4: Analysis of phylogeny and character evolution, version 4.0. Sinauer Associates. Malcomber, S. T., and E. A. Kellogg. 2005. SEPALLATA gene diversification: brave new whorls. Trends In Plant Science 10:427-435. Malecot, V., and D. L. Nickrent. 2008. Molecular phylogenetic relationships of Olacaceae and related Santalales. Systematic Botany 33:97-106. McNeal, J. R., J. V. Kuehl, J. L. Boore, and d. C. W. 2007. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biology 7:57. Meng, S.-W., Zhi-Duan Chen, and D.-Z. Li. 2002. Phylogeny of Saururaceae base on mitochondrial matR gene sequence data. Journal of Plant Research 115:71-76. Merckx, V., P. Schols, H. M.-v. d. Kamer, P. Maas, S. Huysmans, and E. Smets. 2006. Phylogeny and evolution of Burmanniaceae (Dioscoreales) based on nuclear and mitochondrial data. American Journal of Botany 93:1684-1698. Merckx. V., F.T. Bakker, S. Huysmans, and E. Smets. 2009. Bias and conflict in phylogenetic inference of myco-heterotrophic plants: a case study in Thismiaceae. Cladistics 25:64-77. Minamitani, T. 2009. Kyushu plant notes (9): The appearance of Balanophora yakushimensis on the mainland of Kyushu. Journal of Miyazaki Plant Research 11:7-10. Mizukami, Y., H. Huang, M. Tudor, Y. Hu, and H. Ma. 1996. Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8:831-845. Moyroud, E., G. Tichtinsky, and F. Parcy. 2009. The LEAFY floral regulators in angiosperms: Conserved proteins with diverse roles. Journal of Plant Biology 52:177-185. Murata, J. 1988. Morphology and distribution of Balanophora fungosa J. R. et G. Forst. (Balanophoraceae). Journal of Japanese Botany 63:201-210. Murata, J. 1990. Agamic species of Balanophora in Japan. Memoirs of the National Science Museum (Tokyo) 23:43-50. Murata, J. 1992. Female flowers of Balanophora kiushiana. Journal of Japanese Botany 67:166-168. Musselman, L. J., and M. C. Press. 1995. Introduction to parasitic plants. Pages 1-13 in Parasitic plants (M. C. Press, and J. D. Graves, eds.). Chapman & Hall, London, UK. Nickrent, D. 2001. A molecular phylogeny of Santalales. Pages 69-74 in Proceedings of the 7th. International Parasitic Weed Symposium. Faculte des Sciences Universite de Nantes, Nantes, France. Nickrent, D. 2002. Phylogenetic origins of parasitic plants. Pages 29-56 in Parasitic Plants of the Iberian Peninsula and Balearic Islands (J. A. Lopez-Saez, and P. C. a. L. Saez, eds.). Mundi-Prensa, Madrid. Nickrent, D. L., A. Blarer, Y.-L. Qiu, R. Vidal-Russell, and F. E. Anderson. 2004. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evolutionary Biology 4:40. Nickrent, D. L., A. Blarer, Y. L. Qiu, D. E. Soltis, P. S. Soltis, and M. Zanis. 2002. Molecular data place Hydnoraceae with Aristolochiaceae. American Journal of Botany 89:1809-1817. Nickrent, D. L., J. P. Der, and F. E. Anderson. 2005. Discovery of the photosynthetic relatives of the 'Maltese mushroom' Cynomorium. BMC Evolutionary Biology 5:38. Nickrent, D. L., and R. J. Duff. 1996. Molecular studies of parasitic plants using ribosomal RNA. Pages 28-52 in Advances in parasitic plant research (M. T. Moreno, J. I. Cubero, D. Berner, D. Joel, L. J. Musselman, and C. Parker, eds.). Junta de Andalucia, Direccion General de Investigacion Agraria, Cordoba, Spain. Nickrent, D. L., R. J. Duff, A. E. Colwell, A. D. Wolfe, N. D. Young, K. E. Steiner, and C. W. DePamphilis. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. Pages 211-241 in Molecular Systematics of Plants II. DNA Sequencing (D. E. Soltis, P. S. Soltis, and J. J. Doyle, eds.). Kluwer Academic Publishers, Boston, MA. Nickrent, D. L., R. J. Duff, and D. A. M. konings. 1997a. Structural analyses of plastid-derived 16S rRNAs in holoparasitic angiosperms. Plant Molecular Biology 34:731-743. Nickrent, D. L., and M. A. Garcia. 2009. On the brink of holoparasitism: Plastome evolution in dwarf mistletoes (Arceuthobium, Viscaceae). Journal of Molecular Evolution 68:603-615. Nickrent, D. L., V. Malecot, R. Vidal-Russell, and J. P. Der. 2010. A revised classification of Santalales. Taxon 59:538-558. Nickrent, D. L., and L. J. Musselman. 2004. Introduction to parasitic flowering plants in The Plant Health Instructor. Nickrent, D. L., Y. Ouyang, R. J. Duff, and C. W. dePamphilis. 1997b. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Molecular Biology 34:717-729. Nickrent, D. L., and E. M. Starr. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. Journal of Molecular Evolution 39:62-70. Ogi, T., M. Higa, and S. Maruyama. 2011. Melanin Synthesis Inhibitors from Balanophora fungosa. Journal of Agricultural and Food Chemistry 59:1109-1114. Ohta, T. 2000. Mechanisms of molecular evolution. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences 355:1623-1626. Oxelman, B., N. Yoshikawa, B. L. McConaughy, J. Luo, A. L. Denton, and B. D. Hall. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Molecular Phylogenetics and Evolution 32:462-479. Parkinson, C. L., J. P. Mower, Y.-L. Qiu, A. J. Shirk, K. Song, N. D. Young, C. W. dePamphilis, and J. D. Palmer. 2005. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evolutionary Biology 5:73. Pond, S. L. K., S. D. W. Frost, and S. V. Muse. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676-679. Posada, D., and T. R. Buckley. 2004. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53:793-808. R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Reddy, A. S. N. (2007) Alternative splicing of pre-messenger RNA in plants in the genomic era. Annual Review of Plant Biology 58:267-294. Ridley, H. N. (1905) On the dispersal of seeds by wind. Annals of Botany os-19(3) 351-364. Riechmann, J. L., B. A. Krizek, and E. M. Meyerowitz. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of National Academy of Sciences, USA 93:4793-4798. Riechmann, J. L., and E. M. Meyerowitz. 1997. MADS domain proteins in plant development. Biological Chemistry 378:1079-1118. Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. Shan, H. Y., K. M. Su, W. L. Lu, H. Z. Kong, Z. D. Chen, and Z. Meng. 2006. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Development Genes and Evolution 216:785-795. Smith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322:86-89. Soltis, D. E., A. E. Senters, M. J. Zanis, S. Kim, J. D. Thompson, P. S. Soltis, L. R. De Craene, P. K. Endress, and J. S. Farris. 2003. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. American Journal of Botany 90:461-470. Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis, V. Savolaninen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M. Prince, W. J. Kress, K. C. Nixon, and J. S. Farris. 2000. Angiosperm phylogeny inferred from 18S rRNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133:381-461. Soltis, P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402-404. Sommer, H., J. P. Beltran, P. Huijser, H. Pape, W. E. Lonnig, H. Saedler, and Z. Schwarzsommer. 1990. DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus - the protein shows homology to transcription factors. EMBO Journal 9:605-613. Stellari, G. M., M. A. Jaramillo, and E. M. Kramer. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21:506-519. Sunaryo. 1992. Morphologisch-anatomische Untersuchungen an den Knollen von Balanophora fungosa J. R. & G. Forst. ssp. indica (Arn.) B. Hansen var. globosa (Jungh.) B. Hansen und Balanophora elongata Bl. Pages 122 in Fachbereichs Biologie Philipps-Universitat Marburg, Marburg. Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0beta10. Sinauer Associates, Inc. Takhtajan, A. L. 1980. Outline of the classification of flowering plants (magnoliophyta). The Botanical Review 46:225-359. Takhtajan, A. L. 1997. Diversity and classification of flowering plants. Columbia University Press, New York. Tao, R., F. Ye, Y. He, J. Tian, G. Liu, T. Ji, and Y. Su. 2009. Improvement of high-fat-diet-induced metabolic syndrome by a compound from Balanophora polyandra Griff in mice. European Journal of Pharmacology 616:328-333. Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221-244. Theissen, G., A. Becker, A. Di Rosa, A. Kanno, J. T. Kim, and T. Munster. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42:115-149. Theissen, G., and H. Saedler. 2001. Floral quartets. Nature 409:469-471. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882. Thorne, R. F. 1983. Proposed new realignments in the angiosperms. Nordic journal of botany 3:85-117. Vekemans, D., S. Proost, K. Vanneste, H. Coenen, T. Viaene, P. Ruelens, S. Maere, Y. Van de Peer, and K. Geuten. 2012. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Molecular Biology and Evolution in press. Vidal-Russell, R., and D. L. Nickrent. 2008. The first mistletoes: Origins of aerial parasitism in Santalales. Molecular Phylogenetics and Evolution 47:523-537. Wang, B. B., and V. Brendel. 2006. Genomewide comparative analysis of alternative splicing in plants. Proceedings of National Academy of Sciences, USA 103:7175-7180. Watanabe, K. 1942. Morphologisch-biologische studien uber Balanophoraceen in Nippon ausgenommen Taiwan (I). Journal of Japanese Botany 18:250-260. Watanabe, K., and E. Akuzawa. 1982. Balanophora. Pages 12-13 in Wild flowers of Japan, herbaceous plants (Y. Satake, ed.) Heibonsha, Tokyo, Japan. Weigel, D., and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203-209. Westwood, J. H., J. I. Yoder, M. P. Timko, and C. W. dePamphilis. 2010. The evolution of parasitism in plants. Trends in Plant Science 15:227-235. Wettstein, R. 1924. Handbuch der systematischen botanik. Franz Deuticke. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. Pages 315-322 in PCR protocols: a guide to methods and applications. Eds. Innis, M. A. D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., San Diego, CA. Wolfe, A. D., and C. W. dePamphilis. 1997. Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Molecular Biology 33:965-977. Wolfe, A. D., and C. W. dePamphilis. 1998. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Molecular Biology and Evolution 15:1243-1258. Wolfe, K. H., C. W. Morden, and J. D. Palmer. 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proceedings of National Academy of Sciences, USA 89:10648-10652. Wolfe, K. H., and P. M. Sharp. 1993. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. Journal of Molecular Evolution 37:441-456. Yahara, T., H. Ohba, J. Murata, and K. Iwatsuki. 1986. Taxonomic review of vascular plants endemic to Yakushima Island, Japan. Journal of Faculty of Sciences, University of Tokyo, III 14:82-83. Yang, Z. H. 1998. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15:568-573. Yanofsky, M. F., H. Ma, J. L. Bowman, G. N. Drews, K. A. Feldmann, and E. M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39. Young, N. D., and C. W. dePamphilis. 2005. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evolutionary Biology 5:16. Zahn, L. M., H. Z. King, J. H. Leebens-Mack, S. Kim, P. S. Soltis, L. L. Landherr, D. E. Soltis, C. W. dePamphilis, and H. Ma. 2005. The evolution of the SEPALLATA subfamily of MADS-Box genes: A preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209-2223. Zhang, L. Q., T. J. Vision, and B. S. Gaut. 2002. Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. Molecular Biology and Evolution 19:1464-1473. Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, University of Texas, Austin. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15736 | - |
dc.description.abstract | Many holoparasitic plants have reduced plastid genomes and exhibit multiple morphological reductions resulted from evolutionary convergence. The root-parasitic Balanophora (Balanophoraceae) displays one of the most extreme reduction and modification in morphologies and was reported to have enormous rate acceleration in nuclear 18S ribosomal gene. However, the molecular evolution of nuclear genes in parasitic plants remain largely unexplored and despite the family Balanophoraceae has been shown to have a close relation with the basal core eudicots order, Santalales, the exact phylogenetic position of Balanophoraceae remains unsolved.
In this dissertation, molecular phylogenetic analyses were performed to resolve the phylogenetic relationships between Balanophoraceae and other Santalales taxa. To better our understanding of the molecular evolution of nuclear genes in holoparasitic plants, a considerable number of floral MADS-box genes were identified and the conservation of gene structure were examined. The molecular evolutionary rates of six protein-coding genes of holoparasitic Balanophora and hemiparasitic Santalales were compared with photosynthetic core eudicots and the expressions of floral B-class genes were further examined in B. laxiflora. Sequences from nuclear RPB2 genes and two floral homeotic B-class genes, PI and TM6 were used to elucidate the phylogenetic relationships between Balanophoraceae and other Santalales taxa. 67 MADS-box gene loci were obtained from three Balanophoraceae and 14 other Santalales species, which all exhibit a high conservation in gene sequence and structure. Several alternatively spliced transcripts of the MADS-box gene were also identified in our screening, implying potential important roles of these transcripts during floral development. The floral B-class genes in B. laxiflora showed a differential expression pattern in floral and vegetative organs. The evolutionary rate analyses showed that nuclear protein-coding gene sequences have much lower substitution rates than those of nuclear 18S and mitochondrial matR genes, which provide promising markers for phylogenetic analyses. All of the phylogenetic analyses supported that Balanophoraceae is a derived holoparasitic lineage within the parasitic Santalales. Moreover, two agamospermic Balanophora species were found in Taiwan; the morphological features were compared, the first phylogenetic analysis of the genus employing DNA sequences are presented and the host species were further confirmed by amplifying chloroplast matK sequences from the connected root tissues. The molecular evidences showed the two agamospermic Balanophora species in Taiwan are belonging to B. japonica and B. yakushimensis and they are phylogenetically grouped with dioecious B. laxiflora. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T17:51:01Z (GMT). No. of bitstreams: 1 ntu-101-D94b44001-1.pdf: 26348304 bytes, checksum: 95c3c14de139e170d83feec3cf926c95 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
ABSTRACT (Chinese) …………………………………………………………….. i ABSTRACT (English) ……………………………………………………………… ii TABLE OF CONTENTS …………………………………………………………… iii LIST OF TABLES …………………………………………………………………… v LIST OF FIGURES …………………………………………………………………. vi Chapter 1. Overview .……..…………………………....................................... 1 Tables ……..……..…………………………......................................... 9 Chapter 2. Identification and characterization of the MADS-box genes in holoparasitic Balanophoraceae and other Santalales taxa………………………....................... 11 Abstract ……………………………………………………………………... 12 Introduction ...………………………………………………...…………........ 13 Materials and Methods ...………………………………………………..……. 17 Results ……………………..………………………………………………..... 19 Discussion ……………………..…………………………………..………...... 21 Figures and Tables ...…………………………………………………...…...... 25 Supplementary Data ...……………………………………………...…............ 36 Chapter 3. Rate heterogeneity in six protein-coding genes from holoparasites Balanophora (Balanophoraceae) and other Santalales taxa ……..………………….. 38 Abstract …………………………………………………………………….... 39 Introduction ...………………………………………………...……............... 41 Materials and Methods ...………………………………………………..…... 44 Results ……………………..………………………………………………… 48 Discussion ……………………..…………………………………..…………. 53 Acknowledgements ...………………………………………………..……..... 59 Figures and Tables ...…………………………………………………...…...... 60 Supplementary Data ...………………………………………….……...…....... 66 Chapter 4. Phylogenetic relationships between holoparasitic Balanophoraceae and other Santalales taxa inferred from nuclear RPB2 and floral B-class genes…..…………… 72 Abstract …………………………………………………………………....... 73 Introduction ...………………………………… ……...……………............. 74 Materials and Methods ...………………………………………………........ 76 Results ……………………..………………………………………….......... 79 Discussion ……………………..…………………………………................. 81 Acknowledgements ...………………………………… ……..…….............. 84 Figures and Tables ...………………………………………………............... 85 Supplementary Data ...…………………………………………………........ 92 Chapter 5. Morphology and phylogenetics of two holoparasitic plants, Balanophora japonica and B. yakushimensis (Balanophoraceae) and their hosts in Taiwan and Japan ……………………………………………………………………………………… 93 Abstract ………………………………………………………….................... 94 Introduction ...…………………………………… …...……………............... 95 Materials and Methods ...………………………… ………………..…......... 99 Results ……………………..………………………………………………....... 102 Discussion ……………………..…………………………………..………..... 105 Acknowledgements ...………………………………………………..……... 112 Figures and Tables ...…………………………………………………...….... 113 Supplementary Data ...…………………………………………………...….. 117 Chapter 6. Conclusion and future directions ………………………...…..... 121 References...…………………………………………………...…........................ 123 | |
dc.language.iso | en | |
dc.title | 蛇菰科與檀香目植物親緣關係及分子演化之研究 | zh_TW |
dc.title | Phylogenetics and molecular evolution of Balanophoraceae and other Santalales | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王震哲,陳虹樺,丁照棣,陳仁治,鍾國芳 | |
dc.subject.keyword | 蛇菰屬,蛇菰科,檀香目,寄生植物,親緣關係,演化速率,MADS-box基因,基因表現,宿主-寄生生物關係, | zh_TW |
dc.subject.keyword | Balanophora,Balanophoraceae,Santalales,Parasitic plants,Phylogenetics,Evolutionary rate,MADS-box genes,Gene expression,Host-parasite relationship, | en |
dc.relation.page | 132 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-10-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 25.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。