請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 數學系 | |
| dc.contributor.author | You-Jun Yang | en |
| dc.contributor.author | 楊幼君 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:50:58Z | - |
| dc.date.copyright | 2012-10-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-18 | |
| dc.identifier.citation | Aalen, O. O. (1980), “A model for nonparametric regression analysis of counting processes,” Lecture Notes in Statistics, 2, 1–25.
Alioum, A. and Commenges, D. (1996), “A proportional hazards model for arbitrarily censored and truncated data,” Biometrics, 52, 512–524. Beaudoin, D. and Lakhal-Chaieb, L. (2008), “Archimedean copula model selection under dependent truncation,” Statistics In Medicine, 27, 4440–4454. Cao, R. and Gonz ́alez-Manteiga, W. (2008), “Goodness-of-fit tests for conditional models under censoring and truncation,” Journal of Econometrics, 143, 166–190. Cheng, M.-Y., Hall, P., and Yang, Y.-J. (2007), “Nonparametric inference under dependent truncation,” ACTA Scientiarum Mathematicarum (Szeged), 73, 397– 422, dedicated to S ́andor Cs ̈orgo ̈ on the occasion of his 60th Anniversary. Cox, D. R. (1972), “Regression models and life-tables,” Journal of the Royal Statis- tical Society, B 34, 187–220. Cox, D. R. (1975), “Partial likelihood,” Biometrika, 62, 269–276. Datta, S., Satten, G. A., and Williamson, J. M. (2000), “Consistency and asymptotic normality of estimators in a proportional hazards model with interval censoring and left truncation,” Annals of the Institute of Statistical Mathematics, 52, 160– 172. Efron, B. and Petrosian, V. (1992), “A simple test of independence for truncated data with applications to redshift surveys,” Astrophysical Journal, 399, 345–352. Efron, B. and Petrosian, V. (1994), “Survival analysis of the Gamma-ray burst data,” Journal of the American Statistical Association, 89, 452–462. Finkelstein, D. M., Moore, D. F., and Schoenfeld, D. A. (1993), “A proportional hazards model for truncated AIDS data,” Biometrics, 49, 731–740. Grigoletto, M. and Akritas, M. G. (1999), “Analysis of covariance with incomplete data via semiparametric model transformations,” Biometrics, 55, 1177–1187. He, S. and Yang, G. L. (1998), “Estimation of the truncation probability in the random truncation model,” Annals of Statistics, 26, 1011–1027. Kalbfleisch, J. D. and Lawless, J. F. (1989), “Inference based on retrospective ascer- tainment: An analysis of the data on transfusion-related AIDS,” Journal of the American Statistical Association, 84, 360–372. Kalbfleisch, J. D. and Lawless, J. F. (1991), “Regression models for right truncated data with applications to AIDS incubation times and reporting lags,” Statistica Sinica, 1, 19–32. Keiding, N. (1992), “Independent delayed entry,” in Survival Analysis: State of the Art, edited by J. Klein and P. Goel, Boston, MA: Kluwer, 309–326. Lakhal-Chaieb, L., Rivest, L.-P., and Abdous, B. (2006), “Estimating survival under a dependent truncation,” Biometrika, 93, 655–669. Lin, D. Y. and Ying, Z. (1994), “Semiparametric analysis of the additive risk model,” Biometrika, 81, 61–71. Lu, X. and Qi, Y. (2004), “Empirical likelihood for the additive risk model,” Prob- ability and Mathematical Statistics, 24, 419–431. Lynden-Bell, D. (1971), “A method of allowing for known observational selection in small samples applied to 3CR quasars,” Monthly Notices of the Royal Astonomy Society, 155, 95–118. Martin, E. C. and Betensky, R. A. (2005), “Testing quasi-independence of failure and truncation times via conditional Kendall’s tau,” Journal of the American Statistical Association, 100, 484–492. Pan, W. and Chappell, R. (2002), “Estimation in the Cox proportional hazards model with left-truncated and interval-censored data,” Biometrics, 58, 64–70. Quale, C. M. and van der Laan, M. J. (2000), “Inference with bivariate truncated data,” Lifetime Data Analysis, 6, 391–408. Reyno, L., Seymour, L., Tu, D., Dent, S., Gelmon, K., Walley, B., Pluzanska, A., Gorbunova, V., Garin, A., Jassem, J., Pienkowski, T., Dancey, J., Pearce, L., MacNeil, M., Marlin, S., Lebwohl, D., Voi, M., and Pritchard, K. (2004), “Phase III study of N,N-Diethyl-2-[4-(Phenylmethyl)Phenoxy]Ethanamine (BMS-217380- 01) combined with Doxorubicin versus Doxorubicin Alone in metastatic/recurrent breast cancer: National cancer institute of Canada clinical trials group study MA.19,” Journal of Clinical Oncology, 22, 269–276. Sun, L. and Zhou, X. (2001), “Survival function and density estimation for truncated dependent data,” Statistics and Probability Letters, 52, 47–57. Sundaram, R. (2009), “Semiparametric inference of proportional odds model based on randomly truncated data,” Journal of Statistical Planning and Inference, 139, 1381–1393. Tsai, W.-Y. (1990), “Testing the assumption of independence of truncation time and failure time,” Biometrika, 77, 169–177. Wang, M.-C. (1989), “A semiparametric model for randomly truncated data,” Journal of the American Statistical Association, 84, 742–748. Wang, M.-C. and Jewell, N. P. (1985), “The product limit estimate of a distribution function under random truncation,” Technical Report, Program in Biostatistics, University California, Berkeley. Wang, M.-C., Jewell, N. P., and Tsai, W.-Y. (1986), “Asymptotic properties of the product limit estimate under random truncation,” The Annals of Statistics, 14, 1597–1605. Woodroofe, M. (1985), “Estimating a distribution function with truncated data,” The Annals of Statistics, 13, 163–177. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15733 | - |
| dc.description.abstract | 存活分析,研究個體從發生起始事件到發生終點事件的時間,在許多科學領域中是相當重要且常見的課題,而截切是樣本收集時時常發生的問題。在存活時間與截切時間獨立的假設下, product-limit 與 Nelson-Aalen 估計量分別為存活時間之存活函數與累積風險函數之非參數最大概似函數估計量。然而,在實際應用裡,存活時間常與發生起點事件的時間相關,導致存活時間與截切時間相關。例如:愛滋病病人從感染到被診斷出有愛滋病的存活時間可能與病人受到感染時的年齡相關。 Cheng et al. (2007) 探討固定截切時間點相依截切資料非參數存活分析之可辨識性及估計問題。本論文推廣 Cheng et al. (2007) 在非參數假設下分析隨機截切時間點相依截切資料,探討條件存活函數與條件累積風險函數的可辨識性,並且利用核估計方法推廣 product-limit 與 Nelson-Aalen 估計量得出條件存活函數與條件累積風險函數之估計量,進而得到條件風險函數估計量。我們並推導其大樣本性質,並且利用模擬研究這些估計量的表現。我們也將這些估計量應用於一筆乳癌資料與一筆愛滋病資料。 | zh_TW |
| dc.description.abstract | Survival analysis, which studies the time period between an initiating event and a terminating event of an individual, is an important and emerging problem in many scientific fields. Truncation often occurs during collection of data. It is well known that the product-limit and Nelson-Aalen estimators are nonparametric maximum likelihood estimators of the survival function and the cumulative hazard function, respectively, when the survival time and the truncation time are independent. However, in practice, this independence assumption may be violated because the survival time often depends on the time of the initiating event. For example, the survival time from infection to diagnosis of AIDS of an AIDS patient may depend on the age of the patient at the infection. In the case that the occurrence time of truncation is fixed, Cheng et al. (2007) investigated identifiability and estimation problems when analyzing dependently truncated data nonparametrically. In this thesis, we further investigate the case that the occurrence time of truncation is random. We use kernel methods to estimate the survival, cumulative hazard, and hazard functions of the conditional distribution and study both asymptotic and numerical behaviors of the estimators. We find that these estimators are asymtotically consistent and normally distributed. We also apply the methods to analyze a breast cancer data set and an AIDS data set. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:50:58Z (GMT). No. of bitstreams: 1 ntu-101-D93221006-1.pdf: 2172877 bytes, checksum: c50e82b33b4e8b1be1ddf64c1099c8a6 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 論文口試委員審定書................................. i
中文摘要....................................... ii 英文摘要....................................... iii 誌謝......................................... iv 目錄......................................... v 1導論....................................... 1 2文獻回顧..................................... 4 2.1 左截切資料與右截切資料之鏡像關係.................... 4 2.2 獨立假設與檢驗 .............................. 5 2.3 隨機截切資料之非參數估計 ........................ 6 2.4 半參數迴歸模型 .............................. 9 2.5 Copula相依截切模型 ........................... 11 3 截切事件發生時間點固定之資料......................... 13 3.1 可辨識性之探討 .............................. 13 3.2 估計方法.................................. 14 3.3 大樣本性質................................. 16 3.4 模擬研究.................................. 18 3.5 實例應用.................................. 23 4 截切事件發生時間點隨機之資料......................... 34 4.1 可辨識性之探討 .............................. 34 4.2 估計方法.................................. 37 4.3 大樣本性質................................. 38 4.4 模擬研究.................................. 40 4.5 實例應用.................................. 44 附錄一: 截切事件發生時間點固定ΛˆS|X(s|x)之大樣本證明 ............ 56 附錄二: 截切事件發生時間點固定λˆS∗|X∗(s|x)之大樣本證明 ............ 65 附錄三: 截切事件發生時間點隨機ΛˆS∗|X∗(s|x)之大樣本證明 ............ 71 附錄四: 截切事件發生時間點隨機λˆS∗|X∗(s|x)之大樣本證明 ............ 82 參考文獻....................................... 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相依截切 | zh_TW |
| dc.subject | 非參數估計 | zh_TW |
| dc.subject | 存活資料 | zh_TW |
| dc.subject | 平滑估計 | zh_TW |
| dc.subject | 條件風險函數 | zh_TW |
| dc.subject | 條件存活函數 | zh_TW |
| dc.subject | Survival data | en |
| dc.subject | Conditional hazard function | en |
| dc.subject | Conditional survival distribution | en |
| dc.subject | Dependent truncation | en |
| dc.subject | Nonparametric estimation | en |
| dc.subject | Smooth Estimator | en |
| dc.title | 相依截切資料之非參數推估 | zh_TW |
| dc.title | NONPARAMETRIC INFERENCE FOR DEPENDENTLY TRUNCATED DATA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王振男(Jenn-Nan Wang),姚怡慶(Yi-Ching Yao),樊采虹(Tsai-Hung Fan),陳素雲(Su-Yun Huang),江金倉(Chin-Tsang Chiang) | |
| dc.subject.keyword | 條件風險函數,條件存活函數,相依截切,非參數估計,平滑估計,存活資料, | zh_TW |
| dc.subject.keyword | Conditional hazard function,Conditional survival distribution,Dependent truncation,Nonparametric estimation,Smooth Estimator,Survival data, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-10-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
