Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor嚴震東
dc.contributor.authorSon-Haur Hsuen
dc.contributor.author許松豪zh_TW
dc.date.accessioned2021-06-07T17:50:28Z-
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-12-07
dc.identifier.citation1. Kwon BK, Borisoff JF, Tetzlaff W. Molecular targets for therapeutic intervention after spinal cord injury. Mol Interv. 2:244-258. 2002.
2. Condic ML, Lemons ML. Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport. 13:A37-48. 2002.
3. Schweigreiter R, Walmsley AR, Niederost B, Zimmermann DR, Oertle T, Casademunt E, et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol Cell Neurosci. 27:163-174. 2004.
4. Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol. 17:120-127. 2007.
5. Vogelaar CF, Vrinten DH, Hoekman MF, Brakkee JH, Burbach JP, Hamers FP. Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res. 1027:67-72. 2004.
6. Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science. 273:510-513. 1996.
7. Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia. 46:225-251. 2004.
8. Dietz V, Curt A. Neurological aspects of spinal-cord repair: promises and challenges. Lancet neurology. 5:688-694. 2006.
9. Vogelaar CF, Vrinten DH, Hoekman MF, Brakkee JH, Burbach JP, Hamers FP. Sciatic nerve regeneration in mice and rats: recovery of sensory innervation is followed by a slowly retreating neuropathic pain-like syndrome. Brain Res. 1027:67-72. 2004.
10. Ueno M, Yamashita T. Strategies for regenerating injured axons after spinal cord injury - insights from brain development. Biologics. 2:253-264. 2008.
11. Cui Q, So KF. Involvement of cAMP in neuronal survival and axonal regeneration. Anatomical science international / Japanese Association of Anatomists. 79:209-212. 2004.
12. Chalfoun CT, Wirth GA, Evans GR. Tissue engineered nerve constructs: where do we stand? J Cell Mol Med. 10:309-317. 2006.
13. Langer R, Vacanti JP. Tissue engineering. Science. 260:920-926. 1993.
14. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annual review of biomedical engineering. 5:293-347. 2003.
15. Huang YC, Huang YY. Biomaterials and strategies for nerve regeneration. Artificial organs. 30:514-522. 2006.
16. Cheng H, Huang YC, Chang PT, Huang YY. Laminin-incorporated nerve conduits made by plasma treatment for repairing spinal cord injury. Biochem Biophys Res Commun. 357:938-944. 2007.
17. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nature reviews Drug discovery. 8:235-253. 2009.
18. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2:81-96. 2008.
19. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics. 274:1-33. 2004.
20. Raman R, Venkataraman G, Ernst S, Sasisekharan V, Sasisekharan R. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc Natl Acad Sci USA. 100:2357-62. 2003.
21. Capila I, Linhardt RJ. Heparin-protein interactions. Angew Chem Int Ed Engl.41:391-412. 2002.
22. Schwab ME. Neurobiology. Finding the lost target. Nature.403:257, 9-60. 2000.
23. Wu Y, Blum D, Nissou MF, Benabid AL, Verna JM. Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition. Neurosci Lett.221:69-71. 1996.
24. Steinmetz MP, Horn KP, Tom VJ, Miller JH, Busch SA, Nair D, et al. Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J Neurosci.25:8066-76. 2005.
25. Cheng M, Cao W, Gao Y, Gong Y, Zhao N, Zhang X. Studies on nerve cell affinity of biodegradable modified chitosan films. Journal of biomaterials science Polymer edition.14:1155-67. 2003.
26. Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol.187:266-78. 2004.
27. Tomaselli KJ, Damsky CH, Reichardt LF. Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: identification of integrin-related glycoproteins involved in attachment and process outgrowth. J Cell Biol.105:2347-58. 1987.
28. Li J, Shi R. Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration. J Neurosci Methods.165:257-64. 2007.
29. De Ruiter G, Malessy M, Yaszemski M, Windebank A, Spinner R. Designing ideal conduits for peripheral nerve repair. Neurosurgical FOCUS.26:E5. 2009.
30. Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials.29:3574-82. 2008.
31. Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D, et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature.447:92-6. 2007.
32. Asikainen AJ, Hagstrom J, Sorsa T, Noponen J, Kellomaki M, Juuti H, et al. Soft tissue reactions to bioactive glass 13-93 combined with chitosan. Journal of biomedical materials research Part A.83:530-7. 2007.
33. Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol.20:684-9. 2008.
34. Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, et al. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine.9:600-10. 2008.
35. Dezawa M. Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases. Med Mol Morphol.41:14-9. 2008.
36. Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia.13:570-5. 2006.
37. Oliveira J, Almeida F, Biancalana A, Baptista A, Tomaz M, Melo P, et al. Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience.1-9. 2010.
38. Shi W, Yao J, Chen X, Lin W, Gu X, Wang X. The delayed repair of sciatic nerve defects with tissue-engineered nerve grafts in rats. Artif Cells Blood Substit Immobil Biotechnol.38:29-37. 2010.
39. Yao L, de Ruiter GC, Wang H, Knight AM, Spinner R, Yaszemski MJ, et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials.31:5789-97. 2010.
40. Cheng M, Cao W, Gao Y, Gong Y, Zhao N, Zhang X. Studies on nerve cell affinity of biodegradable modified chitosan films. Journal of biomaterials science Polymer edition.14:1155-67. 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15707-
dc.description.abstract神經損傷會造成神經細胞的死亡及神經纖維的斷裂,導致神經功能的喪失,且神經系統的高度分工性與複雜的損傷修復機轉,都造成神經再生過程的挑戰。本研究的目的,在運用組織工程的概念,配合神經損傷的修復策略,以生物分解性材料幾丁聚醣,來整合細胞、支架與細胞調控因子的三大組織工程元素達到神經再生的目的。首先應用幾丁聚醣與肝素,製備藥物釋放載體,來吸附、保護、延長並強化生長因子的生物效用,以神經滋養因子aFGF進行測試,載體可有效保護aFGF並達到長期釋放的目的,且對aFGF的吸附率高達85%以上。在動物實驗中,更發現載體本身還具有減少損傷組織纖維化的能力。另外透過複合材料與表面改質技術,將奈米碳管與幾丁聚醣結合,結果顯示,奈米碳管的高機械強度與導電性,可改善幾丁聚醣所製備的神經導管強度不足的問題並賦予導管導電的特性。由此ㄧ性質,期望未來能配合電刺激,用以促進神經再生的治療上,而細胞相容性不足的問題,則運用氧氣電漿改質的技術,來增加材料表面的親水性,更可以共價性鍵結的形式,與細胞外基質(ECM)等分子,在原本材料表面形成穩固的修飾,來創造更適合細胞生長的微環境,經PC-12細胞的測試,顯示確實可達到增加細胞貼附與神經分化的效果。本研究最後的實驗,則是運用骨髓幹細胞合併經昆布氨酸(laminin)修飾的幾丁聚醣導管,進行動物實驗。結果顯示,合併幹細胞療法,可明顯促進神經再生跨越1公分長的坐骨神經缺損,其運動神經元存活的數目亦較多。但是結果也發現幾丁聚醣在體內降解過程,可能會引發慢性的發炎反應,導致神經再生失敗,而合併幹細胞治療,則可調控發炎反應,達到再生的目的。而此動物實驗的結果,更凸顯生物實驗的重要,唯有透過長時間的生物試驗才能更確認研究成果的安全性與應用性,此乃材料或細胞層次的測試無法達到的。本論文運用各種神經策略進行神經再生的研究,循序漸進由材料、生長因子的分子層次到細胞,乃至於動物實驗,希望本研究之成果,能對神經再生的研究有些微的貢獻。zh_TW
dc.description.abstractNerve injury causes the death of neural cells and the breakage of nerve fibers resulting in the loss of nerve function. Neuron regeneration faces a difficult challenge due to the highly specialized system and the complex repair mechanism. In this study, according to the concept of tissue engineering and neural regeneration strategy, We use chitosan as a degradable biomaterial to integrate the three main tissue engineering elements: cell, scaffold and cell regulating factors, for achieving the purpose of nerve regeneration. Firstly, self-assembled drug carrier by using chitosan and heparin to adsorb, protect, prolong and enhance the bioactivity of growth factors (also called acidic fibroblast growth factor (aFGF)) was developed and also decrease the fibrosis and prevent adhesion in vivo. Furthermore, chitosan incorporating with carbon nanotube (CNT) can effectively improve the physicochemical properties of chitosan in various applications, especially in mechanical strength and electrical conductivity. In order to make CNT/Chitosan cell friendly most, electric O2-plasma treatment and laminin modification were applied. Successful modification was confirmed by immunolocalization, significantly improved cell adhesion and neurite extension. We hypothesize that CNT/chitosan materials provide functional nerve conduit for healing injured nerves. In this study, the final test used laminin-modified chitosan multi-walled nerve conduit combining with bone marrow stem cells (BMSCs), and grating to bridge in sciatic nerve of SD for 16 weeks. The result is shown that the therapy with stem cell can promote the neuron regeneration to crossover a 10 mm long gap and help more motor neuron to survivor. Moreover, the result is also shown that the degradation of chitosan might cause chronic inflammation which might fail the regeneration of neuron, and the therapy with stem cell can modulate the inflammation to overcome this problem. At last, this study is shown the important of animal experiments: because these data cannot present the material or cell test, the long-term animal experiments is the only way to confirm the safety and the applicability of research results. This paper using many strategy of neuron regeneration from materials, growth factors, cells to animal testing. Hope the results in this study can contribute a little to the research of neuron regeneration.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:50:28Z (GMT). No. of bitstreams: 1
ntu-101-D95b41010-1.pdf: 6792430 bytes, checksum: d82a6217ada2be2289abe02754d94507 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents本文目錄
第ㄧ章 序論 1
1.1 研究目的與目標 1
第二章 研究背景 1
2.1 神經損傷 1
2.2 神經再生之策略 3
2.3 神經組織工程 3
2.3.1 支架:神經導管(Nerve conduit) 4
2.3.2 細胞 5
2.3.3 生長調控因子(培養環境及訊息因子) 6
第三章 研究計畫 8
3.1 主題一:具與生長因子aFGF特異親和性之藥物控制釋放載體的開發及在神經損傷之應用 10
3.1.1 實驗目的 10
3.1.2 實驗設計 11
3.1.3 材料方法 12
3.1.4 結果與討論 12
3.2 主題二:應用幾丁聚醣與奈米碳管開發適合神經細胞生長之複合性材料並結合電刺激促進神經再生 14
3.2.1 實驗目的 14
3.2.2 實驗設計 15
3.2.3 材料方法 16
3.2.4 結果與討論 18
3.3 主題三:應用培養骨髓間質幹細胞的黏層蛋白修飾幾丁聚醣神經導管接合坐骨神經損傷之大鼠 20
3.3.1 實驗目的 20
3.3.2 實驗設計 21
3.3.3 材料方法 23
3.3.4 結果與討論 24
第四章 綜合討論 27
參考文獻 58
dc.language.isozh-TW
dc.subject幹細胞zh_TW
dc.subject神經導管zh_TW
dc.subject藥物釋放zh_TW
dc.subject幾丁聚醣zh_TW
dc.title應用幹細胞、神經生長因子與神經導管在神經修復之研究與應用zh_TW
dc.titleApplication of Stem Cells, Neurotrophic Factors and Conduit in Nerve Repairen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.coadvisor黃義侑,鄭宏志
dc.contributor.oralexamcommittee陳克紹,黃文成
dc.subject.keyword幾丁聚醣,藥物釋放,神經導管,幹細胞,zh_TW
dc.subject.keywordChitosan,drug delivery,nerve conduit,stem cell,en
dc.relation.page61
dc.rights.note未授權
dc.date.accepted2012-12-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved