Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩(Jr-Hau He)
dc.contributor.authorDung-Sheng Tsaien
dc.contributor.author蔡東昇zh_TW
dc.date.accessioned2021-06-07T17:50:25Z-
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-12-24
dc.identifier.citationChapter 1
1. M. Itzler, S. Donati, M. S. Unlu, K. Kato, IEEE J. Sel. Top. Quantum Electron. 2004, 10, 665–667.
2. L. VJ, J. Oh, A. P. Nayak, A. M. Katzenmeyer, K. H. Gilchrist, S. Grego, N. P. Kobayashi, S. Y. Wang, A. A. Talin, N. K. Dhar, M. S. Islam, IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1002–1032.
3. W. R. Fahrner, R. Job, M. Werner, Microsyst. Technol. 2001, 7, 138–144.
4. J. Q.Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A . Smart, Nat. Photonics 2007, 1, 176– 179.
5. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Appl. Opt. 2001, 41, 3075– 3083.
6. W. Zhou, M. Tao, L. Chen, H. Yang, J. Appl. Phys. 2007, 102, 103105.
7. W. D. Li, S. Y. Chou, Opt. Express. 2010, 18, 931–937.
8. R. S. Howard, G. H. Dennis, Appl. Phys. Lett. 1998, 73, 3815–3818.
9. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensor 2009, 9, 6504–6529.
10. C. Y. Chen, M. W. Chen, J. J. Ke, C. A. Lin, J. R. D. Retamal, J. H. He, Pure Appl. Chem. 2010, 82, 2055–2073.
11. P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D.Bai, E. G. Wang, J. Mater. Chem. 2009, 19, 1002–1005.
12. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Nano Lett. 2009, 9, 1039–1044.
13. F. Xia, T. Mueller, T.; Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839–843.
14. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2012, 6, 74–80.
Chapter 2
1. M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433–7473.
2. M. S. Arnold, J. D. Zimmerman, C. K. Renshaw, X. Xu, R. R. Lunt, C. M. Austin, S. R. Forrest, Nano Lett. 2009, 9, 3354– 3358.
3. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, Nat. Mater. 2005, 4, 138– 1424.
4. R. People, J. C. Bean, C. G. Bethea, S. K. Sputz, L. J. Peticolas, Appl. Phys. Lett. 1992, 61, 1122– 1124.
5. J. M. Choi, S. Im., Appl. Surf. Sci.2005, 244, 435– 438.
6. D. E. Groom, S. E. Holland, M. F. Levi, N. P. Palaio, S. Perlmutter, R. J. Stover, M. Wei, Proc. SPIE 1999, 3649, 80– 90.
7. Y. Bai, S. G. Bernd, J. R. Mosack, M. C. Farris, J. T. Montroy, J. Bajaj, Proc. SPIE 2004,5167, 83– 93.
8. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.Y. Lin, W. Liu, J. A. Smart, Nat. Photonics 2007, 1, 176– 179.
9. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, Appl. Opt. 2001, 41, 3075– 3083.
10. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, Appl. Phys. Lett. 2008, 93, 251108.
11. W. Zhou, M. Tao, L. Chen, H. Yang, J. Appl. Phys. 2007, 102, 103105.
12. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, J. H. He, J. Mater. Chem. 2010, 20, 8134– 8138.
13. H. B. Xu, N. Lu, D. P. Qi, J. Y. Hao, L. G. Gao, B. Zhang, L. F. Chi, Small 2008, 4, 1972– 1975.
14. C. H. Sun, P. Jiang, B. Jiang, Appl. Phys. Lett. 2008, 92, 61112.
15. H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, J. H. He, Langmuir 2010, 26, 12855– 12858.
16. Y. R. Lin, H. P. Wang, C. A. Lin, J. H. He, J. Appl. Phys. 2009, 106,114310.
17. Z. Fan, R. Kapadia, P. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, Nano Lett. 2010, 10, 3823– 3827
18. Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kaoadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, A. Javey Nano Lett. 2010, 10, 520– 523.
19.Y. R. Lin, K. Y. Lai, H. P. Wang, J. H. He, Nanoscale 2010, 2, 2765– 2768.
20. Y. A. Dai, H. J. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, J. H. He, J. Mater. Chem. 2010, 20, 10924– 10930.
21. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. Mckenzie, J. W. P. Hsu, Nano Lett. 2008, 8, 1501– 1505.
22. J. H. Huang, C. Y. Chen, Y. F. Lai, Y. I. Shih, Y. C. Lin, J. H. He, C. P. Liu, Cryst. Growth Des. 2010, 10, 3297– 3301.
23. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 4, 6285– 6291.
24. J. H. He, P. H. Chang, C.Y. Chen, K. T. Tsai, Nanotechnology 2009, 20, 135701.
25. Z. L. Wang, Mater. Sci. Eng., R 2009, 64, 33– 71.
26. H. Yoshikawa, S. Adachi, Jap. J. Appl. Phys. 1997, 36, 6237–6243.
27. J. S. Rayleigh, Proc. London Math. Soc. 1880, 11, 51– 56
28. D. A. Neamen, Semiconductor Physics and Devices, 3rd ed., McGraw Hill Publications: New York, 2003; p 330.
29. J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko, Z. L. Wang, Z. L. Nanotechnology 2010, 21, 95502.
30. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, J. C. Campbell, Appl. Phys. Lett. 2006, 89, 33506.
31. G. M. Ali, P. Chakrabarti, J. Phys. D: Appl. Phys. 2010, 43, 415103.
32. Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, C. S. Chang, S. H. Liu, J. Electron. Mater. 2002, 32, 395–399.
33. H. Zhu., C. X. Shan, L. K. Wang, J. Zheng, J. Y. Zhang, B. Yao, D. Z. Shen, J. Phys. Chem. C 2010, 114, 7169– 7172.
34. D. J. Griffiths, Introduction to Electrodynamics, 3rd ed.; Prentice Hall International Editions: NJ, 2003; p 104.
35. C. H. Lin, C. W. Liu, Sensors 2010, 10,8797– 8826.
36. J. Y. Lee, Y. S. Choi, W. H. Yeom, Y. K. Yoon, J. H. Kim, S. Im, Thin Solid Films 2002, 420, 112– 116.
37. J. H. He, C. H. Ho, C. Y. Chen, Nanotechnology 2009, 20, 65503.
38. C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, Z. L. Wang, J. Am. Chem. Soc. 2007, 129, 12096– 12097.
39. M. W. Chen, C. Y. Chen, D. H. Lien, Y. Ding, J. H. He, Opt. Express 2010, 18, 14836–14841.
40. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, D. A. Golberg, Sensors 2009, 9, 6504– 6529.
41. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. L. Wang, Nano Lett. 2007, 7,1003– 1009.
42. C. Y. Chen, M.W. Chen, J. J. Ke, C. A. Lin, J. R. D. Retamal, J. H. He, Pure Appl. Chem. 2010, 82,2055– 2077.
43. J. P. Berenger, J. Comput. Phys. 1994, 114, 185– 200.
Chapter 3
1. E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 2003, 18, R33–R51.
2. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. L. Wang, Nano Lett. 2007, 7, 1003–1009.
3. J. H. He, P. H. Chang, C. Y. Chen, K. T. Tsai, Nanotechnology 2009, 20, 135701.
4. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 4, 6285–6291.
5. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 2009, 9, 6504–6529.
6. C. Soci, A. Zhang, X. Bao, H. Kim, Y. Lo, and D. L. Wang, J. Nanosci. Nanotechnol. 2010, 10, 1430–1449.
6. J. G. Lu, P. C. Chang, Z. Fan, Mater. Sci. Eng. R. 2006, 52, 49–91.
7. K. Liu, M. Sakurai, M. Aono, Sensors 2010, 10, 8604–8634.
8. J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, Z. L. Wang, Appl. Phys. Lett. 2009, 4, 191103.
10. S. Mridha, D. Basak, J. Appl. Phys. 2007, 101, 083102.
11. J. H. He, C. H. Ho, Appl. Phys. Lett. 2007, 91, 233105.
12. I. S. Jeng, J. H. Kim, S. Im, Appl. Phys. Lett. 2003, 83, 2946–2948.
13. H. V. Wenckstern, S. Muller, G. Biehne, H. Hochmuth, M. Lorenz and M. Grundmann, J. Electron. Mater. 2010, 39, 559–562.
14. K. Sun, Y. Jing, N. Park, C. Li, Y. Bando, D. L. Wang, J. Am. Chem. Soc. 2010, 132, 15465–15467.
15. C. A. Lin, D. S. Tsai, C. Y. Chen, J. H. He, Nanoscale 2011, 3, 1195–1199.
16. D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, J. H. He, ACS Nano 2011, 5, 7748–7753.
17. X. D. Wang, J. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, Z. L. Wang, J. Am. Chem. Soc. 2005, 127, 7920–7923.
18. B. E. Park, H. Ishiwara, Appl. Phys. Lett. 2003, 82, 1197–1199.
19. J. S. Tian, M. H. Liang, Y. T. Ho, Y. A. Liu, L. Chang, J. Cryst. Growth 2008, 310, 777–782.
20. S. Xu, Z. L. Wang, Nano Res. 2011, 4, 1013–1098.
21. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, Hoboken, NJ 2007.
22. Y. F. Gu, X. M. Li, J. L. Zhao, W. D. Yu, X. D. Gao, C. Yang, Solid State Commun. 2007, 143, 421–424.
23. H. Lin, C. W. Liu, Sensors 2010, 10, 8797–8826.
24. L. F. Edge, D. G. Schlom, S. A. Chambers, E. Cicerrella, J. L. Freeouf, B. Hollander, J. Schubert, Appl. Phys. Lett. 2004, 84, 726–728.
25. W. C. Lien, D. S. Tsai, S. H. Chiu, D. G. Senesky, R. Maboudian, A. P. Pisano, J. H. He, IEEE Electron Device Lett. 2011, 32, 1564–1566.
Chapter 4
1. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, Nanoscale 2011, 3, 20–30.
2. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. 2005, 102, 10451–10453.
3. B. Radisavljevic, M. B. Whitwick, A. Kis, ACS Nano 2011, 5, 9934–9938.
4. M. Osada, T. Sasaki, Adv. Mater. 2012, 24, 210–228.
5. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. Y. Chen, M. Madsen, A. C. Ford, Y. L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Nature 2010, 468, 286–289.
6. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
7. R. S. Howard, G. H. Dennis, Appl. Phys. Lett. 1998, 73, 3815–3818.
8. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensor 2009, 9, 6504–6529.
9. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, Nano Lett. 2007, 7, 1003–1009.
10. C. Y. Chen, M. W. Chen, J. J. Ke, C. A. Lin, J. R. D. Retamal, J. H. He, Pure Appl. Chem. 2010, 82, 2055–2073.
11. P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D.Bai, E. G. Wang, J. Mater. Chem. 2009, 19, 1002–1005.
12. S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayer, X. Wang, Adv. Funct. Mater. 2011, 21, 4464–4469.
13. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Nano Lett. 2009, 9, 1039–1044.
14. F. Xia, T. Mueller, T.; Y. M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839–843.
15. T. Mueller, F. Xia, P. Avouris, Nat. Photon. 2010, 4, 297–301.
16. F. Bonaccorso, Z. Sun, A. C. Ferrari, Nat. Photon. 2010, 4, 611–621.
17. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147–150.
18. Y. Zhang, J. Ye, Y. Matcuhashi, Y. Iwasa, Nano Lett. 2012, 12, 1136–1140.
19. K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, L. J. Li, Nano Lett. 2012, 12, 1538–1544.
20. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111–5116.
21. K. F. Mak, C. Lee, J. Hone, J Shan, T. F. Heinz, Phys. Rev. lett. 2010, 105, 136805.
22. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2012, 6, 74–80.
23. J. B. Casady, R. W. Johnson, Solid-State Electron. 1996, 39, 1409–1422.
24. W. C. Lien, D. S. Tsai, S. H. Chiu, D. G. Senesky, R. Maboudian, A. P. Pisano, J. H. He, IEEE Electron Device Lett. 2011, 32, 1564–1566.
25. D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, J. H. He, ACS Nano 2011, 5, 7748–7753.
26. D. M. Brown, E. T. Downey, M. Ghezzo, J. W. Kretchmer, R. J. Saia, Y. S. Liu, J. A. Edmond, G. Gati, J. M. Pimbley, W. E. Schneider, IEEE Trans. Electron. Devices 1993, 40, 325–333.
27. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin, Adv. Mater. 2012, 24, 2320–2325.
28. C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen, L. J. Li, Nano Lett. 2011, 11, 3612–3616.
29. E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernede, J. Tedd, J. Pouzet, J. Salardenne, Sol. Energy Mater. Sol. Cells 1997, 46, 115–121.
30. S. Dhara, P. K. Giri, J. Appl. Phys. 2011, 110, 124317.
31. M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433–7473.
32. S. Y. Chou, M. Y. Liu, IEEE J. Quantum Electron. 1992, 28, 2358–2368.
33. M. Li, W. A. Anderson, Solid-State Electron. 2007, 51, 94–101.
34. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 10, 6285–6291.
35. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, D. Wang, J. Nanosci. Nanotechnol. 2010, 10, 1–20.
36. C. Li,Y. Bando, M. Liao, Y. Koide, D. Golberg, Appl. Phys. Lett. 2010, 97, 161102.
37. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H. Y. Chiu, H. Zhao, Phys. Rev. B 2012, 86, 045406.
38. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schuller, Appl. Phys. Lett. 2011, 99, 102109.
39. D. S. Tsai, C. F. Kang, H. H. Wang, C. A. Lin, J. J. Ke, Y. H. Chu, J. H. He, Opt. Lett. 2012, 37, 1112–1114.
40. A. Vijayakumar, R. M. Todi, K. B. Sundaram, IEEE Electron Device Lett. 2007, 28, 713–715.
41. A. Vescan, I. Daumiller, P. Gluche, W. Ebert, E. Kohn, Diam. Relat. Mater. 1998, 7, 581–584.
Chapter 5
1. M. Itzler, S. Donati, M. S. Unlu, K. Kato, IEEE J Sel Top Quant Electron. 2004, 10, 665–667.
2. E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, O. Aytur, IEEE J Sel Top Quant Electron. 2004, 10, 742–751.
3. W. R. Fahrner, R. Job, M. Werner, Microsyst. Technol. 2001, 7, 138–144.
4. A. BenMoussa, A. Soltani, U. Schuhle, K. Haenen, Y. M. Chong, W. J. Zhang, R. Dahal, J. Y. Lin, H. X. Jiang, H. A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J. C. De Jaeger, B. Giordanengo, M. Richter, F. Scholze, J. F. Hochedez, Diamond. Relat. Mater. 2009, 18, 860–864.
5. A. Soltani, H. A. Barkad, M. Mattalah, B. Benbakhti, J. C. De Jaeger, Y. M. Chong, Y. S. Zou, W. J. Zhang, S. T. Lee, A. BenMoussa, B. Giordanengo, J. F. Hochedez, Appl. Phys. Lett. 2008, 92, 053501.
6. J. Li, Z. Y. Fan, R. Dahal, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2006, 89, 213510.
7. A. BenMoussa, A. Soltani, K. Haenen, U. Kroth, V. Mortet, H. A. Barkad, D. Bolsee, C. Hermans, M. Richter, J. C. De Jaeger, J. F. Hochedez, Semicond. Sci. Technol. 2008, 23, 035026.
8. J. Xing, E. Guo, K. J. Jin, H. Lu, J. Wen, G. Yang, Opt. Lett. 2009, 34, 1675–1677.
9. L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando, D. Golberg, Adv. Mater. 2010, 22, 5145–5149.
10. C. Yan, N. Singh, P. S. Lee, Appl. Phys. Lett. 2010, 96, 053108.
11. D. Walker, M. Razeghi, Opto-Electr. Rev. 2000, 8, 25–42.
12. C. L. Joseph, Exp. Astron. 1995, 6, 97–127.
13. D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, J. H. He, ACS Nano 2011, 5, 7748–7753.
14. E. Monroy, F. Omnes, F. Calle, Semicond. Sci. technol. 2003, 18, R33–R51.
15. M. Razeghi, A. Rogalski, J. Appl. Phys. 1996, 79, 7433–7473.
16. W. D. Li, S. Y. Chou, Opt. Express. 2010, 18, 931–937.
17. S. Bengtsson, M. Bergh, M. Choumas, C. Olesen, K. O. Jeppson, Jpn. J. Appl. Phys. Part 1 1996, 35, 4175–4181.
18. M. O. Aboelfotoh, R. S. Kern, S. Tanaka, R. F. Davis, C. I. Harris, Appl. Phys. Lett. 1996, 69, 2873–2875
19. J. H. He, R. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, Z. L. Wang, Adv. Mater. 2006, 18, 650–654.
20. C.-M. Lin, Y.-Y. Chen, V. V. Felmetsger, D. G. Senesky, A. P. Pisano, Adv. Mater. 2012, 24, 2722–2727.
21. J. L. Zhao, S. T. Tan, S. Iwan, X. W. Sun, W. Liu, S. J. Chua, Appl. Phys. Lett. 2009, 94, 093506.
22. W. C. Lien, K. B. Chang, D. G. Senesky, C. Carraro, A. P. Pisano, R. Maboudian, Electrochem. Solid-State Lett. 2010, 13, D53–D56.
23. V. V. Felmetsger, P. N. Laptev, S. M. Tanner, J. Vac. Sci. Technol. A. 2009, 27, 417–422.
24. J. H. Edgar, Z. J. Yu, D. J. Smith, J. Chaudhuri, X. Cheng, J. Electron. Mater. 1997, 26, 1389–1393.
25. J. B. D. Soole, H. Schumacher, IEEE J. Quantum Electron. 1991, 27, 737–752.
26. D. S. Tsai, C. F. Kang, H. H. Wang, C. A. Lin, J. J. Ke, Y. H. Chu, J. H. He, Optics Lett. 2012, 37, 1112–1114.
27. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, Hoboken, NJ 2007.
28. Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 10, 6285–6291.
29. A. Vijayakumar, R. M. Todi, K. B. Sundaram, IEEE Electron Device Lett. 2007, 28, 713–715.
30. P. G. Neudeck, S. L. Garverick, D. J. Spry, L.-Y. Chen, G. M. Beheim, M. J. Krasowski, M. Mehregany, Physica Status Solidi A-Applications and Mater. Sci. 2009, 206, 2329–2345.
31. W. C. Lien, D. S. Tsai, D. H. Lien, D. G. Senesky, J. H. He, A. P. Pisano, IEEE Electron Dev. Lett. 2012, 33, 1586–1588.
32. W. C. Lien, D. S. Tsai, S. H. Chiu, D. G. Senesky, R. Maboudian, A. P. Pisano, J. H. He, IEEE Electron Device Lett. 2011, 32, 1564–1566.
33. A. Vescan, I. Daumiller, P. Gluche, W. Ebert, E. Kohn, Diam. Relat. Mater. 1998, 7, 581–584.
34. E. G. Stassinopoulos, J. P. Raymond, Proc. IEEE 1988,76, 1423–1442.
35. A. Kalavagunta, A. Touboul, L. Shen, R. D. Schrimpf, R. A. Reed, D. M. Fleetwood, R. K. Jain, U. K. Mishra, IEEE Trans. Nucl. Sci. 2008, 55, 2106–2112.
36. S. Y. Chou, M. Y. Liu, IEEE J. Quantum Electron. 1992, 28, 2358–2368.
37. M. Li, W. A. Anderson, Solid-State Electron. 2007, 51, 94–101.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15704-
dc.description.abstract本論文中我們將分別有四個主題來討論利用低維度的奈米材料與奈米薄膜來設計所需要的光偵測器。
在第二章中,我們利用氧化鋅奈米柱陣列(ZnO NRAs)做為抗反射層來提升Si MSM 光偵測器的響應,利用氧化鋅對UV光的強吸收來補足Si光偵測器再UV波段的底響應、並且也因氧化鋅奈米柱的結構對可見光與近紅外光來說可以形成漸變式折射率降低可見光與紅外光的反射,進而提升Si MSM光偵測器在長波長區域的響應。
在第三章中,藉由在p-Si/n-ZnO中間成長LAO奈米層達成具有無視可見光的UV光偵測器。由於LAO層可以減少Si與ZnO的晶格不匹配,同時具有寬能帶、高介電性。故p-Si/LAO/n-ZnO光偵測器比p-Si/n-ZnO光偵測器有更好的整流特性。 加上LAO與p-Si會形成位能障,在小電壓下可以阻擋由光激發產生的光電子從Si流向ZnO,進而形成無視可見光的效果。此UV光偵測器將來可以更便利應用在一般日光環境中,也不受可見光與紅外光影響。
在第四章,我們利用新穎的MoS2二維奈米材料製作超薄的MSM光偵測器,由於MoS2具有很高的光吸收能力(厚度2 nm的MoS2在可以見光區域吸收可以達到~10%)和良好的熱穩定性,加上我們設計成MSM結構的光偵測器。在元件表現上,我們首先發現其具有光增益效果造成光響應比以往研究高約3個數量級,且可以在200 °C的高溫下操作。同時其光響應速度也比過去別人所報導的來的快約2個數量級 (上升時間~70 μs,回復時間~110 μs)。這些元件特性證明了MoS2光偵測器將來可以在高溫環境下進行光偵測、影像、通訊等應用。
在第五章,我們將AlN直接成長在Si上並以此做成深UV MSM光偵測器。由於AlN是良好的輻射阻抗、高熱導性、好的化學穩定性與寬能隙的材料,故再經由質子( 能量: 2 MeV、劑量: 1013 cm-2)轟擊之後操作在5 V偏壓下其PDCR(光暗電流比)值還有0.7。在高溫測試方面,AlN元件可以穩定的操作在300 °C的環境下。其光響應速度也可以達到 (上升時間~110 ms,回復時間~80 ms)。以上的元件操作特性實足以作為太空或是高溫等嚴酷環境下的應用。
zh_TW
dc.description.abstractThis thesis consists of an introduction, four chapters and a conclusion, with each chapter covering a different topic. In the introduction, we introduce the various limitations of the conventional photodetectors that we study in the later chapters.
In chapter 2, we demonstrated Si MSM PDs with ZnO nanorod arrays (NRAs) as a top layer, which absorbs the UV photons (photon energy > band gap of ZnO) effectively and serves as an ARC layer, providing an effective refractive-index gradient between Si and air in the long-wavelength region (photon energy < band gap of ZnO), enabling broadband detection with greatly enhanced responsivity. The responsivity of Si MSM PDs is increased by up to 3 orders of magnitude in the UV region and by 2 orders of magnitude in the visible/NIR regions due to ZnO NRA layers. The huge enhancement of broadband detection by Si MSM PDs with ZnO NRAs could allow the low-cost production of photonic devices and extend the application potential for Si-based optoelectronic devices.
In chapter 3, the visible-blind UV PDs employing n-ZnO/LaAlO3 (LAO)/p-Si double heterojunction using pulse laser deposition (PLD) are presented. The n-ZnO/LAO/p-Si PDs exhibit visible-blind UV responsivity with the cutoff wavelength of responsivity at 380 nm, corresponding to the near band edge (NBE) absorption of ZnO. Inserted 10-nm-thick LAO layers effectively eliminate visible light responses via blocking the electrons excited by visible photons in p-Si near the interface owing to the high potential barrier between p-Si and LAO layers (~2.0 eV). This study paves the way for visible-blind UV photosensing applications under outdoor lighting.
In chapter 4, we report few-layer MoS2 Schottky PDs with back-to-back MSM geometry, capable of broadband photodetection from visible to UV regions with working temperatures up to 200 °C for use in harsh environments. Until few-layer MoS2 is demonstrated here, the broadband responsivity feature is not previously achievable for harsh environment use since all of photodetection materials for harsh environments are wide-bandgap semiconductors. As a new record, the responsivity of 5.7 A/W, has never been obtained in 2D nanomaterial-based PDs due to very high optical absorption of ~10% (very high absorption coefficient of up to 7.5×105 cm-1) of the few-layer MoS2 and a high photogain of ~13.3. In addition, temporal measurements reveal fast response times (~70 μs) and recovery times (~110 μs). The excellent optical properties of few-layer MoS2 promise a new generation of fast, broadband PDs based on 2D nanomaterials for the applications in harsh environments, such as sensing, imaging, and intrachip optical interconnects at the high temperatures.
In chapter 5, we demonstrate the Schottky PDs with back-to-back metal-semiconductor-metal (MSM) geometry by employing AlN thin films on Si(100) substrates from reactive sputtering deposition with working temperature up to 300 °C for use in solar-blind UV detection and harsh environments. For 2 MeV proton irradiation, the PDCR value of AlN MSM PDs is 0.7 under a 5 V bias at proton fluences up to 1013 cm-2, indicating that the PDs are well suited for space applications. The AlN MSM PDs show a fast and stable photoresponse, i.e., ~110 ms of the rise time and ~80 ms of the fall time at 5 V bias. This study paves the way for fast and solar-blind photosensing in the space environment and high-temperature conditions.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:50:25Z (GMT). No. of bitstreams: 1
ntu-101-D96941019-1.pdf: 2701101 bytes, checksum: 90c101e254ef8c44534c629b530beea6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書………………………………………………………………...... i
誌謝………………………………………………………………………………...... ii
摘要…………………………………………………………………………..............v
Abstract………………...…………………………………………………………....vii
Table of Contents........................................................................................................ix
List of Figures...............................................................................................................xi
Chapter 1 Introduction…………………………………………………………….......1
Reference………………............…………………………………...........….……4
Chapter 2 Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor
–Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays...........................6
2.1 Introduction……………………...…………………………...………....……6
2.2 Results and Discussion.....................................................................................8
2.3 Summary.........................................................................................................19
2.4 Methods..........................................................................................................20
References............................................................................................................22
Supporting Information........................................................................................27
Chapter 3 n-ZnO/LaAlO3/p-Si Heterojunction for Visible-Blind UV Detection........31
3.1 Introduction……………………...…………………………...………....…..31
3.2 Methods..........................................................................................................32
3.3 Results and Discussion...................................................................................33
3.4 Summary.........................................................................................................39
References............................................................................................................39
Chapter 4 Few Layer MoS2 with Broadband High Photogain and Fast Optical Switching for Use in Harsh Environments..................................................................42
4.1 Introduction……….……………...…………………………...………....….42
4.2 Results and Discussion...................................................................................45
4.3 Summary.........................................................................................................55
4.4 Methods..........................................................................................................56
References............................................................................................................58
Chapter 5 Ultrafast Solar-blind Detectors Employing AlN Thin Films on Si Substrates for Use in Harsh Environments...................................... ...........................63
5.1 Introduction……….……………...…………………………...………....….63
5.2 Results and Discussion...................................................................................65
5.3 Summary.........................................................................................................73
5.4 Methods..........................................................................................................73
References............................................................................................................75
Chapter 6 Conclusion..................................................................................................79
Curriculum Vitae.........................................................................................................82
dc.language.isoen
dc.subject氧化鋅奈米柱zh_TW
dc.subject紫外光zh_TW
dc.subject二硫化鉬zh_TW
dc.subject光偵測器zh_TW
dc.subject嚴苛環境zh_TW
dc.subjectMoS2en
dc.subjectZnO narorodsen
dc.subjectHarsh environmenten
dc.subjectPhotodetectoren
dc.subjectUVen
dc.title在嚴苛輻射與高溫環境的前瞻光偵測器之物理與奈米材料設計zh_TW
dc.titlePhysics and Nanomaterial Designs of Advanced Photodetectors for Extreme Radiation and Temperature Environmentsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee杜立偉(Li-Wei Tu),郭浩中(Hao-Chung Kuo),林恭如(Gong-Ru Lin),李連忠(Lain-Jong Li),任貽均(Yi-Jun Jen)
dc.subject.keyword光偵測器,嚴苛環境,紫外光,氧化鋅奈米柱,二硫化鉬,zh_TW
dc.subject.keywordPhotodetector,Harsh environment,UV,ZnO narorods,MoS2,en
dc.relation.page85
dc.rights.note未授權
dc.date.accepted2012-12-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved