Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英zh_TW
dc.contributor.advisorWen-Yen Chiuen
dc.contributor.author吳政zh_TW
dc.contributor.authorCheng Wuen
dc.date.accessioned2021-06-07T17:50:18Z-
dc.date.available2024-08-30-
dc.date.copyright2013-01-16-
dc.date.issued2012-
dc.date.submitted2002-01-01-
dc.identifier.citation1. H. P. Boehm, A. Clauss, G. O. Fischer, U. Hofmann, Z. Naturf. 1962. 17: p. 150
2. F. A. Lindemann, Z. Phys. 1910. 11: p. 609
3. Novoselov, K. S. Geim, A. K. Morozov, S. V. Morozov et al., Electric field effect in atomically thin carbon films. Science, 2004. 306: p. 666-669
4. Lee, C. et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321 (5887): p. 385–388
5. Alexander A. Balandin et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 2008. 8 (3): p. 902–907
6. K.I. Bolotin et al., Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 2008. 146(9-10): p.351-355
7. Akturk, A. and Goldsman, N., Electron transport and full-band electron-phonon interactions in graphene. Journal of Applied Physics, 2008. 103(5): p.053702-053710
8. Nair, R. R. et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008. 320(5881): p. 1308
9. Wang, X., Zhi, L. J., Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett., 2008. 8(1): p.323-327
10. Goki Eda, Giovanni Fanchini et al., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008. 3: p.270 - 274
11. Eda, G., Lin, Y. Y., Miller, S., Chen, C. W., Su, W. F., Chhowalla, M., Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett., 2008. 92(23): p. 233305
12. Y. P. Dan , Y. Lu , N. J. Kybert , Z. T. Luo , A. T. C. Johnson, Intrinsic Response of Graphene Vapor Sensors. Nano Lett., 2009. 9(4): p. 1472–1475
13. J. T. Robinson , F. K. Perkins , E. S. Snow , Z. Q. Wei , P. E. Sheehan, Reduced Graphene Oxide Molecular Sensors. Nano Lett., 2008. 8(10): p. 3137–3140
14. L. H. Tang , Y. Wang , Y. M. Li , H. B. Feng , J. Lu , J. H. Li, Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater., 2009. 19(17): p. 2782-2789
15. Y. Ohno , K. Maehashi , Y. Yamashiro , K. Matsumoto, Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Lett., 2009. 9(9): p. 3318–3322
16. N. Mohanty , V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett., 2008. 8(12): p. 4469–4476
17. E. Yoo , J. Kim , E. Hosono , H. Zhou , T. Kudo , I. Honma, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries. Nano Lett., 2008. 8(8): p. 2277–2282
18. D. Y. Pan , S. Wang , B. Zhao , M. H. Wu , H. J. Zhang , Y. Wang , Z. Jiao, Li Storage Properties of Disordered Graphene Nanosheets. Chem. Mater., 2009. 21 (14): p. 3136–3142
19. Y. F. Xu , G. K. Long , L. Huang , Y. Huang , X. J. Wan , Y. F. Ma , Y. S. Chen, Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon, 2010. 48(11): p. 3308-3311
20. J. B. Wu , H. A.Becerril , Z. N. Bao , Z.F. Liu , Y. S. Chen , P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008. 92(26): p.263302

21. Z. Y. Yin , S. Y. Sun , T. Salim , S. X. Wu , X. Huang , Q. Y. He , Y. M. Lam , H. Zhang, Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano., 2010. 4 (9): p. 5263–5268
22. K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , M. I. Katsnelson , I. V. Grigorieva , S. V. Dubonos , A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438: p. 197-200
23. Y. B. Zhang , Y. W. Tan , H. L. Stormer , P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005. 438: p. 201-204
24. H. B. Heersche , P. Jarillo-Herrero , J. B. Oostinga , L. M. K. Vandersypen , A. F. Morpurgo, Bipolar supercurrent in graphene. Nature, 2007. 446: p. 56-59
25. C. Berger,Z. Song,X.Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science, 2006. 312: p. 1191-1196
26. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater., 2009. 8: p. 203 -207
27. P. R. Somani, S. P. Somani and M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett., 2006. 430(1-3): p. 56-59
28. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina and A. A. Zolotukhin, Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45(10): p. 2017-2021


29. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 2008. 93(11): p. 113103-113106
30. A. N. Obraztsov, Chemical vapour deposition: Making graphene on a large scale. Nature Nanotechnology, 2009. 4: p. 212 – 213
31. X. Wang, H. You, F. Liu, M. Li, L. Wan, S. Li, Q. Li, Y. Xu, R. Tian, Z. Yu, D. Xiang and J. Cheng, Large-Scale Synthesis of Few-Layered Graphene using CVD. Chem. Vapor Depos., 2009. 15(1-3): p. 53-56
32. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett., 2009. 9 (1): p. 30–35
33. L. G.de Arco, Y. Zhang, A. Kumar and C. Zhou, Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans. Nanotechnol., 2009. 8(2): p. 135-138
34. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457: p. 706-710
35. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and Rodney S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324: p. 1312-1314
36. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol., 2010. 5: p. 574-578

37. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature, 2007. 448: p. 457-460
38. S. Gilje, S. Han, M. Wang, K. L. Wang and R. B. Kaner, A Chemical Route to Graphene for Device Applications. Nano Lett., 2007. 7 (11): p. 3394–3398
39. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature, 2006. 442: p. 282-286
40. S. Park, R. S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009. 4: p. 217-224
41. C. Hontoria-Lucas, A.J. Lopez-Peinado, J.de D. Lopez-Gonzalez, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 1995. 33: p.1585-1592
42. Akbar Bagri, Cecilia Mattevi, Muge Acik, Yves J. Chabal, Manish Chhowalla, Vivek B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010. 2: p. 581–587
43. Jun Ito, Jun Nakamura, Akiko Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. J. Appl. Phys., 2008. 103(11): p. 113712
44. B. C. Brodie, Philos. Trans. R. Soc. London, 1859. 149: p. 249–259.
45. W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958. 80(6): p. 1339
46. Yuxi Xu , Hua Bai , Gewu Lu , Chun Li and Gaoquan Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc., 2008. 130(18): p. 5856–5857

47. Dan Li1, Marc B. Muller1, Scott Gilje, Richard B. Kaner & Gordon G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008. 3: p. 101-105

48. Sungjin Park , Jinho An , Inhwa Jung , Richard D. Piner , Sung Jin An , Xuesong Li , Aruna Velamakanni and Rodney S. Ruoff, Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett., 2009. 9(4): p. 1593–1597
49. A. Das1, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha1, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari & A. K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008. 3: p. 210-215
50. Michael J. McAllister , Je-Luen Li , Douglas H. Adamson , Hannes C. Schniepp , Ahmed A. Abdala ,†Jun Liu , Margarita Herrera-Alonso , David L. Milius , Roberto Car , Robert K. Prud'homme , and Ilhan A. Aksay, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater., 2007. 19(18): p. 4396–4404
51. Hannes C. Schniepp , Je-Luen Li , ichael J. McAllister , Hiroaki Sai , Margarita Herrera-Alonso , Douglas H. Adamson , Robert K. Prud'homme , Roberto Car , Dudley A. Saville , and Ilhan A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B, 2006. 110 (17): p.8535–8539
52. Junbo Wu , Mukul Agrawal , Hector A. Becerril , Zhenan Bao , Zunfeng Liu , Yongsheng Chen and Peter Peumans, Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano, 2010. 4 (1): p. 43–48
53. Chiang, C.K., Fincher, C.R., Park, Y.W., et al., Electrical-Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
54. Lefrant, S., Lichtmann, L.S., Temkin, H., et al., Raman-Scattering in (Ch)X and (Ch)X Treated with Bromine and Iodine. Solid State Communications, 1979. 29(3): p. 191-196.
55. 趙文元 and 王亦軍, 功能高分子材料化學. 1996, 北京: 化學工業出版社.
56. Monk, P.M.S., Mortimer, R.J., and Rosseinsky, D.R., Electrochromism: Fundamentals and applications. 1995, Weinheim, Germany: Wiley-VCH.
57. Nalwa, H.S., Handbook of Organic Conductive Molecules and Polymers. Vol. 1-4. 1997, Chichester, England: John Wiley & Sons.
58. Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R., Handbook of conducting polymers. 2nd ed. 1998, New York: Marcel Dekker.
59. Street, G.B., Clarke, T.C., Geiss, R.H., et al., J. Phys., 1983. C3: p. 599.
60. Kanazawa, K.K., Diaz, A.F., Krounbi, M.T., et al., Electrical-Properties of Pyrrole and Its Copolymers. Synthetic Metals, 1981. 4(2): p. 119-130.
61. Diaz, A.F. and Logan, J.A., Electroactive Polyaniline Films. Journal of Electroanalytical Chemistry, 1980. 111(1): p. 111-114.
62. Tourillon, G. and Garnier, F., New Electrochemically Generated Organic Conducting Polymers. Journal of Electroanalytical Chemistry, 1982. 135(1): p. 173-178.
63. MacAndrew, T.P., TRIP, 1997. 5: p. 7.
64. Cao, Y., Smith, P., and Heeger, A.J., Counterion Induced Processibility of Conducting Polyaniline and of Conducting Polyblends of Polyaniline in Bulk Polymers. Synthetic Metals, 1992. 48(1): p. 91-97.
65. Skotheim, T.A., Handbook of conducting polymers. Vol. 2. 1986, New York: Marcel Dekker.
66. 柯賢達, 聚醋酸噻吩之合成及摻合之研究. 1994, 臺灣大學化學工程學研究所碩士論文.
67. Lux, F., Properties of Electronically Conductive Polyaniline - a Comparison between Well-Known Literature Data and Some Recent Experimental Findings. Polymer, 1994. 35(14): p. 2915-2936.
68. Nigrey, P.J., Macinnes, D., Nairns, D.P., et al., Lightweight Rechargeable Storage Batteries Using Polyacetylene, (Ch)X as the Cathode-Active Material. Journal of the Electrochemical Society, 1981. 128(8): p. 1651-1654.
69. Allen, W.N., Brant, P., Carosella, C.A., et al., Ion-Implantation Studies of (Sn)X and (Ch)X. Synthetic Metals, 1980. 1(2): p. 151-159.
70. Clarke, T.C., Krounbi, M.T., Lee, V.Y., et al., Photoinitiated Doping of Polyacetylene. Journal of the Chemical Society-Chemical Communications, 1981(8): p. 384-385.
71. Aleshin, A.N., Williams, S.R., and Heeger, A.J., Transport properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Synthetic Metals, 1998. 94(2): p. 173-177.
72. Kirchmeyer, S. and Reuter, K., Scientific importance, properties and growing applications of poly( 3,4-ethylenedioxythiophene). Journal of Materials Chemistry, 2005. 15(21): p. 2077-2088.
73. Ghosh, S. and Inganas, O., Nano-structured conducting polymer network based on PEDOT-PSS. Synthetic Metals, 2001. 121(1-3): p. 1321-1322.
74. Kim, W.H., Kushto, G.P., Kim, H., et al., Effect of annealing on the electrical properties and morphology of a conducting polymer used as an anode in organic light-emitting devices. Journal of Polymer Science Part B-Polymer Physics, 2003. 41(21): p. 2522-2528.

75. Kim, W.H., Makinen, A.J., Nikolov, N., et al., Molecular organic light-emitting diodes using highly conducting polymers as anodes. Applied Physics Letters, 2002. 80(20): p. 3844-3846.
76. Lai, S.L., Chan, M.Y., Fung, M.K., et al., Concentration effect of glycerol on the conductivity of PEDOT film and the device performance. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2003. 104(1-2): p. 26-30.
77. Jonsson, S.K.M., Birgerson, J., Crispin, X., et al., The effects of solvents on the morphology and sheet resistance in poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals, 2003. 139(1): p. 1-10.
78. Timpanaro, S., Kemerink, M., Touwslager, F.J., et al., Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy. Chemical Physics Letters, 2004. 394(4-6): p. 339-343.
79. Louwet, F., Groenendaal, L., Dhaen, J., et al., PEDOT/PSS: synthesis, characterization, properties and applications. Synthetic Metals, 2003. 135(1-3): p. 115-117.
80. Ouyang, J., Chu, C.W., Chen, F.C., et al., High-Conductivity Poly(3,4-Ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Device. Adv. Funct. Mater, 2005. 15(2): p. 203-208.
81. Kim, J.Y., Jung, J.H., Lee, D.E., et al., Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synthetic Metals, 2002. 126(2-3): p. 311-316.
82. 王建義, 薄膜工程學. 2004: 全華圖書公司.
83. Mulder, M., Basic Principles of Membrane Technology. 2nd ed. 1996: Kluwer Acdemic.
84. 李正中, 漫談光學薄膜技術. 2005: 光電科技雜誌.
85. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano, 2010. 4: p. 4806-4814.
86. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-H.; Tour, J. M., Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. J. Am. Chem. Soc., 2008. 130: p. 16201-16206.
87. Price, B. K.; Tour, J. M., Functionalization of Single-Walled Carbon Nanotubes’On Water’ . J. Am Chem. Soc., 2006. 128: p. 12899-12904.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15701-
dc.description.abstract本實驗的目的為製備磺酸硫醇化之石墨烯/奈米銀複合材料,再將之混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸( PEDOT:PSS )做為複合導電液,並利用旋轉塗佈的方式製成透明導電薄膜,觀察其不同配方下,複合導電液對表面電阻、導電度與穿透度的影響。
實驗主要分為兩個部分,第一部分利用Hummers Method合成石墨烯,再利用苯胺衍生物:對-氨基苯硫酚與對-氨基苯磺酸鈉進形石墨烯表面改質,使石墨烯表面接枝硫醇與磺酸鈉官能基,接著利用原位還原的方式讓石墨烯表面分散奈米銀粒子,並觀察其原位還原方式與吸附方式,石墨烯表面銀粒子分散形態之差別。實驗發現:以原位還原的方式分散奈米銀粒子,粒子分布較均勻且尺寸均一,故為較佳的方法。
第二部分將合成完之磺酸硫醇化石墨烯/奈米銀複合材料,混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸做為複合導電液,並利用旋轉塗佈的方式製成透明導電薄膜,觀察其導電度與穿透度之變化,且與表面沒有分散奈米銀粒子之磺酸化石墨烯做比較。實驗結果發現:表面分散奈米銀粒子之磺酸硫醇化石墨烯,所做出的透明導電薄膜,表面電阻明顯下降且導電度較佳,因此推斷奈米銀粒子所扮演的導電間隙子角色,可以有效的傳遞石墨烯層與層之間的電子,故導電度較佳;此外在60nm厚度下之薄膜穿透度,可見光區皆超過85%,顯示為透明度良好的導電薄膜。
因此,磺酸硫醇化石墨烯/奈米銀複合材料混摻聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸做成之透明導電薄膜,導電度明顯高於沒有分散奈米銀粒子之磺酸化石墨烯/聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸薄膜,且薄膜具有良好的光學穿透度。
zh_TW
dc.description.abstractThe aim of this study was to synthesize the sulfonated sulfhydrylated graphene/silver nanoparticles complex conductive dispersion blended with Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (Graphene-Ag/PEDOT:PSS). In this study, the conductive film was fabricated by spin coating the Graphene-Ag/PEDOT:PSS complex dispersion on glass substrate. The optoelectronic properties of the conductive film such as transparency, conductivity, and durability were investigated to compare the relationship between the graphene content and PEDOT:PSS.

This study included two parts. In first part, by using Hummers method, graphene was synthesized from graphite via oxidation reaction and thermal annealing. Then, by using 4-aminothiophenol and sulfanilic acid sodium salt hydrate as the precursor, sulfonated sulfhydrylated graphene was synthesized from graphene via diazonium functionalization. Furthermore, by using silver nitrate as the precursor, sulfonated sulfhydrylated graphene decorated with silver nanoparticles was via in situ reduction.

In second part, the Graphene-Ag/PEDOT:PSS complex conductive dispersion was synthesized by blending graphene/silver nanoparticles complex dispersion and PEDOT:PSS. Then, the conductive film was fabricated by spin coating the Graphene-Ag/PEDOT:PSS complex dispersion on glass substrate. Furthermore, the transparency, conductivity, particle size and morphology were characterized by UV-Vis spectrophotometer, Volt-Ohm-Milliammete, Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), respectively.
III
It showed that the Graphene-Ag/PEDOT:PSS complex conductive film owned superior surface resistance (87.5 Ω/sq) and transparency (transmittance > 85% at 60 nm film thickness). Furthermore, the conductivity of the Graphene-Ag/PEDOT:PSS thin film was obviously better than the Graphene/PEDOT:PSS film due to the introduction of silver nano spacer.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:50:18Z (GMT). No. of bitstreams: 1
ntu-101-R00524076-1.pdf: 8321578 bytes, checksum: 640017ee2349e1c1e6b83c2d167ca36f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要….....................................I
Abstract………………………………………………………………………………III
致謝…………………………………………………………………………………...V
目錄…………………………………………………………………………………VII
表目錄……………………………………………………………………………...VIII
圖目錄………………………………………………………………………………..IX
第一章 緒論…………………………………………………………………………..1
第二章 文獻回顧……………………………………………………………………..3
2-1 石墨烯……………………………………………………………………….3
2-2 導電高分子………………………………………………………………...11
2-3 薄膜材料…………………………………………………………………...17
第三章 實驗方法……………………………………………………………………23
3-1 實驗藥品…………………………………………………………………...23
3-2 實驗儀器…………………………………………………………………...29
3-3 實驗方法…………………………………………………………………...33
3-4 實驗流程…………………………………………………………………...39
3-5 實驗儀器分析……………………………………………………………...47
第四章 結果與討論…………………………………………………………………51
4-1 反應流程與機制…………………………………………………………...51
4-2磺酸硫醇化石墨烯/奈米銀複合材料的性質分析………………………..51
4-3導電薄膜的分析…………………………………………………………...55
第五章 結論…………………………………………………………………………59
參考文獻……………………………………………………………………………..61
-
dc.language.isozh_TW-
dc.subject透明導電薄膜zh_TW
dc.subject吩-聚苯乙烯磺酸zh_TW
dc.subject4-乙烯基二氧&#22139zh_TW
dc.subject聚3zh_TW
dc.subject奈米銀粒子zh_TW
dc.subject對-氨基苯磺酸鈉zh_TW
dc.subject石墨烯zh_TW
dc.subject對-氨基苯硫酚zh_TW
dc.subjectTransparent Conducive Filmen
dc.subjectGrapheneen
dc.subject4-aminothiophenolen
dc.subjectSulfanilic Acid Sodium Salt Hydrateen
dc.subjectSilver Nanoparticlesen
dc.subjectPoly(3en
dc.subject4-ethylenedioxythiophene)-Poly(styrenesulfonate)en
dc.title透明導電薄膜:聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸/石墨烯之製備與性質研究zh_TW
dc.titlePreparation and Properties of PEDOT:PSS/Graphene Transparent Conductive Filmsen
dc.typeThesis-
dc.date.schoolyear101-1-
dc.description.degree碩士-
dc.contributor.coadvisor謝國煌zh_TW
dc.contributor.coadvisorKuo-Huang Hsiehen
dc.contributor.oralexamcommittee陳思賢zh_TW
dc.contributor.oralexamcommitteeSy-Shyan Chenen
dc.subject.keyword石墨烯,對-氨基苯硫酚,對-氨基苯磺酸鈉,奈米銀粒子,聚3,4-乙烯基二氧&#22139,吩-聚苯乙烯磺酸,透明導電薄膜,zh_TW
dc.subject.keywordGraphene,4-aminothiophenol,Sulfanilic Acid Sodium Salt Hydrate,Silver Nanoparticles,Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate),Transparent Conducive Film,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU.2012.10053-
dc.rights.note未授權-
dc.date.accepted2013-01-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved