Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorYu-Ju Huangen
dc.contributor.author黃郁茹zh_TW
dc.date.accessioned2021-06-07T17:49:07Z-
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1. 工研院材化所;生質聚酯材料技術技術說明書;2020年經濟部搶鮮大賽;創03.生質聚酯材料技術
2. https://kknews.cc/other/429be9q.html
3. https://www.mordorintelligence.com/industry-reports/pet-packaging-market
4. https://www.avantium.com/technologies/yxy/
5.http://ibuyplastic.com/tech_center/tech_paper/tech_detailcontent.phtml?id=224 IBP_SID=efd6f2359bdc42a7409af179a6966921
6. http://www.propack.es/uploads/1/4/8/4/14846678/spo_ts13-12.pdf
7. Burgess, S. K.; Kriegel, R. M.; Koros, W. J., Carbon dioxide sorption and transport in amorphous poly (ethylene furanoate). Macromolecules 2015, 48 (7), 2184-2193.
8. Burgess, S. K.; Leisen, J. E.; Kraftschik, B. E.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J., Chain mobility, thermal, and mechanical properties of poly (ethylene furanoate) compared to poly (ethylene terephthalate). Macromolecules 2014, 47 (4), 1383-1391.
9. Papageorgiou, G. Z.; Tsanaktsis, V.; Bikiaris, D. N., Synthesis of poly (ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Physical Chemistry Chemical Physics 2014, 16 (17), 7946-7958.
10. van Berkel, J. G.; Guigo, N.; Visser, H. A.; Sbirrazzuoli, N., Chain structure and molecular weight dependent mechanics of poly (ethylene 2, 5-furandicarboxylate) compared to poly (ethylene terephthalate). Macromolecules 2018, 51(21), 8539-8549.
11. Sun, L.; Zhang, Y.; Wang, J.; Liu, F.; Jia, Z.; Liu, X.; Zhu, J., 2, 5‐Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly (ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science 2019, 136 (11), 47186.
12. Joshi, A. S.; Lawrence, J. G.; Coleman, M. R., Effect of Biaxial Orientation on Microstructure and Properties of Renewable Copolyesters of Poly (ethylene terephthalate) with 2, 5-Furandicarboxylic Acid for Packaging Application. ACS Applied Polymer Materials 2019, 1 (7), 1798-1810.
13. Konstantopoulou, M.; Terzopoulou, Z.; Nerantzaki, M.; Tsagkalias, J.; Papageorgiou, G. Z., Poly (ethylene furanoate-co-ethylene terephthalate) biobased copolymers: Synthesis, thermal properties and cocrystallization behavior. European Polymer Journal 2017, 89, 349-366.
14. Sousa, A. F.; Matos, M.; Freire, C. S.; Silvestre, A. J.; Coelho, J. F., New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer 2013, 54 (2), 513-519.
15. Poulopoulou, N.; Kasmi, N.; Siampani, M.; Terzopoulou, Z. N.; Bikiaris, D. N.; Achilias, D. S.; Papageorgiou, G. Z., Exploring Next-Generation Engineering Bioplastics: poly (alkylene furanoate)/poly (alkylene terephthalate)(PAF/PAT) Blends. Polymers 2019, 11 (3), 556.
16. McNaught, Alan D., Compendium of chemical terminology. Oxford: Blackwell Science 1997, Vol. 1669.
17. Maeda, T.; Otsuka, H.; Takahara, A., Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Progress in Polymer Science 2009, 34 (7), 581-604.
18. Kotliar, A. M., Interchange reactions involving condensation polymers. Journal of Polymer Science: Macromolecular Reviews 1981, 16 (1), 367-395.
19. Pilati, F.;Marianucci, E.; Berti, C., Study of the reactions occurring during melt mixing of poly (ethylene terephthalate) and polycarbonate. Journal of applied polymer science 1985, 30 (3), 1267-1275.
20. Stewart, M. E.; Cox, A. J.; Naylor, D. M., Reactive processing of poly (ethylene 2, 6-naphthalene dicarboxylate)/poly (ethylene terephthalate) blends. Polymer 1993, 34 (19), 4060-4067.
21. Matsuda, H.; Asakura, T.; Miki, T., Triad sequence analysis of poly (ethylene/butylene terephthalate) copolymer using 1H NMR. Macromolecules 2002, 35 (12), 4664-4668.
22. https://www.materialsnet.com.tw/DocView.aspx?id=35498
23. Nechyporchuk, O.; Belgacem, M. N.; Bras, J., Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products 2016, 93, 2-25.
24. Isogai, A.; Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. nanoscale 2011, 3 (1), 71-85.
25. Nogi, M.; Iwamoto, S.; Nakagaito, A. N.; Yano, H., Optically transparent nanofiber paper. Advanced materials 2009, 21 (16), 1595-1598.
26. Wang, J.; Gardner, D. J.; Stark, N. M.; Bousfield, D. W.; Tajvidi, M.; Cai, Z., Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustainable Chemistry Engineering 2018, 6 (1), 49-70.
27. Mascheroni, E.; Rampazzo, R.; Ortenzi, M. A.; Piva, G.; Bonetti, S.; Piergiovanni, L., Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 2016, 23 (1), 779-793.
28. https://highscope.ch.ntu.edu.tw/wordpress/?p=40787
29. Kong, Y.; Hay, J. N., Multiple melting behaviour of poly (ethylene terephthalate). Polymer 2003, 44 (3), 623-633.
30. van Berkel, J. G.; Guigo, N.; Kolstad, J. J.; Sipos, L.; Wang, B.; Dam, M. A.; Sbirrazzuoli, N., Isothermal Crystallization Kinetics of Poly (Ethylene 2, 5‐Furandicarboxylate). Macromolecular Materials and Engineering 2015, 300 (4), 466-474.
31. Frone, A. N.; Berlioz, S.; Chailan, J. F.; Panaitescu, D. M., Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydrate polymers 2013, 91 (1), 377-384.
32. Edlund, U.; Lagerberg, T.; Ålander, E., Admicellar polymerization coating of CNF enhances integration in degradable nanocomposites. Biomacromolecules 2018, 20 (2), 684-692.
33. Mishra, S.; Naik, J. B.; Patil, Y. P., The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Composites Science and Technology 2000, 60 (9), 1729-1735.
34. Zhou, C.; Chu, R.; Wu, R.; Wu, Q., Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 2011, 12 (7), 2617-2625.
35. Zhang, X.; Ma, P.; Zhang, Y., Structure and properties of surface-acetylated cellulose nanocrystal/poly (butylene adipate-co-terephthalate) composites. Polymer Bulletin 2016, 73 (7), 2073-2085.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15631-
dc.description.abstract聚對苯二甲酸乙二酯(PET)是目前在食品包裝中被廣泛使用的石化高分子之一,然而因為環保意識的抬頭,要如何減少PET的用量又可以維持﹑甚至提升其機械、阻氣性質成為重要的議題之一。本研究利用摻入具有高阻氣性及機械性質,但相對高成本的生質聚酯高分子聚2,5-呋喃二甲酸乙二酯(PEF),以達成PET的減量及阻氣性的提升。然而PET及PEF因化學結構的不同,會在混摻後發生大規模的相分離,不僅提高加工上的困難度,性質亦大打折扣。因此,本研究透過將PET/PEF摻合物加熱至熔融態進行酯交換反應,由DSC觀察Tg的變化(兩個Tg變一個)證明成功使PET及PEF相容,並且能透過反應時間控制相容性及結晶度。在機械性質上,摻合物酯交換前後之楊氏模數及抗張強度並無明顯變化,斷裂伸長率則些微下降。在阻氧性上,摻入PEF可以有效降低氧氣透過率,PEF比例達30wt%時即可降至PET的0.6倍以下。
另外,本研究亦成功利用摻入少量纖維素奈米纖維(CNF)及纖維素微米結晶(MCC),使PET的氧氣透過率降至原本的0.6倍以下。
zh_TW
dc.description.abstractPolyethylene terephthalate (PET) is a fossil-based polymer widely used as food and beverage packaging material. Nowadays, because environmental issue has been much more important, reducing the usage of PET and simultaneously enhancing gas barrier properties becomes a critical issue. We blend a 100% bio-based polyester which has superior gas properties and high mechanical properties, polyethylene furanoate (PEF), into PET for solving the issue we have mentioned. However, PET and PEF are naturally immiscible, which may cause the difficulty of processing and may even deteriorate the properties of PET after blending. We enhance the compatibility of PET and PEF by transesterification over their melting temperature. The compatibility between PET and PEF was observed from the change of their glass transition temperature which was measured by DSC. After the transesterification reaction, we find that the compatibility between PET and PEF is improved dramatically. Moreover, we can control the crystallinity of PET/PEF blending by different reaction time. When it comes to mechanical properties, we find that after transesterification, modulus and tensile strength do not change much but elongation at break decrease. We successfully reduce oxygen permeability of PET by blending with PEF. For blending 30 wt% of PEF, oxygen permeability is 0.6 times lower than that of PET.
We also blend cellulose nanofiber (CNF) and cellulose microcrystalline (MCC), an eco-friendly material extracted from plants, into PET to improve gas barrier properties. Blending 1wt% of CNF and MCC into PET can dramatically decrease oxygen permeability to 0.6 times lower than that of PET.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:49:07Z (GMT). No. of bitstreams: 1
U0001-0402202115034700.pdf: 5375799 bytes, checksum: 37ae71f2b8bfb621a2737185e66f7161 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機 1
第二章 文獻回顧 3
2.1. 聚對苯二甲酸乙二酯(PET) 3
2.2. 聚呋喃二甲酸乙二酯(PEF) 5
2.3. PET/PEF 共聚物 6
2.4. PET/PEF 摻合物 8
2.5. 酯交換反應(Ester Exchange Reaction) 10
2.6. 纖維素奈米纖維(Cellulose Nanofiber) 11
第三章 實驗方法與儀器 13
3.1. 實驗藥品 13
3.2. 樣品製備 15
3.2.1. PET/PEF 摻合物 15
3.2.2. 酯交換反應 15
3.2.3. PET/cellulose 混摻及熱壓 16
3.3. 差示掃描量熱儀(Differential Scanning Calorimeters, DSC) 17
3.3.1. PET/PEF摻合物之相容性、玻璃轉移溫度分析 17
3.3.2. PET/PEF摻合物之等溫結晶分析 17
3.3.3. PET/cellulose摻合物之熱性質分析 18
3.4. 熱重分析儀(Thermogravimetric Analyzer,TGA) 18
3.5. 萬能試驗機(Universal/Tensile Tester) 18
3.6. 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 20
3.7. X光散射(X-ray Scattering) 20
3.8. 氧氣透過分析儀(Oxygen Permeation Testing Analyzer, OTR) 22
第四章 結果與討論 24
4.1. PET/PEF摻合物 24
4.1.1. 相容性分析 24
4.1.2. 熱性質分析 33
4.1.3. 機械性質分析 35
4.1.4. 氧氣透過率分析 45
4.1.5. 等溫結晶分析 48
4.2. PET/cellulose摻合物 53
4.2.1. 熱性質分析 53
4.2.2. 機械性質分析 55
4.2.3. 氧氣透過率分析 56
第五章 結論 59
第六章 參考文獻 61
附錄 65
dc.language.isozh-TW
dc.title利用PEF及纖維素提升PET之阻氣性質zh_TW
dc.titleEnhancement in Gas Barrier Properties of Polyethylene Terephthalate by Blending with Polyethylene Furanoate and Celluloseen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬(Wen-Bin Liau),邱文英(Wen-Yen Chiu),張光偉(Guang-Way JANG)
dc.subject.keywordPET,PEF,相容性,酯交換反應,阻氣性,纖維素奈米纖維,纖維素微米結晶,zh_TW
dc.subject.keywordPET,PEF,miscibility,transesterification reaction,gas barrier properties,cellulose nanofiber,cellulose microcrystalline,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202100518
dc.rights.note未授權
dc.date.accepted2021-02-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0402202115034700.pdf
  目前未授權公開取用
5.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved